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XXI. 4 Memoir on the Single and Double Theta-Functions.

By A. Cavigy, F.R.S., Sadlerian Professor of Pure Mathematics in the
Unwversity of Cambridge.
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TuE Theta-Functions, although arising historically from the Elliptic Functions, may
be considered as in order of simplicity preceding these, and connecting themselves
directly with the exponential function (e* or) exp. ®; viz, they may be defined each
of them as a sum of a series of exponentials, singly infinite in the case of the single
functions, doubly infinite in the case of the double functions; and so on. The number
of the single functions is =4 ; and the quotients of these, or say three of them each
divided by the fourth, are the elliptic functions sn, cn, dn; the number of the double
functions is (4?=) 16 ; and the quotients of these, or say fifteen of them each divided
by the sixteenth, are the hyper-elliptic functions of two arguments depending on the
square root of a sextic function : generally the number of the p-tuple theta-functions
is =47; and the quotients of these, or say all but one of them each divided by the
remaining function, are the Abelian functions of p arguments depending on the
irrational function y defined by the equation F(x, #)=0 of a curve of deficiency p.
If instead of connecting the ratios of the functions with a plane curve we consider the
functions themselves as coordinates of a point in a (47— 1)dimensional space, then we
have the single functions as the four coordinates of a point on a quadri-quadric curve
(one-fold locus) in ordinary space ; and the double functions as the sixteen coordinates
of a point on a quadri-quadric two-fold locus in 15-dimensional space, the deficiency
of this two-fold locus being of course =2. _

The investigations contained in the First Part of the present Memoir, although for
simplicity of notation exhibited only in regard to the double functions are, in fact,
applicable to the general case of the p-tuple functions ; but in the main the Memoir
relates only to the single and double functions, and the title has been given to it
accordingly. The investigations just referred to extend to the single functions ; and
there is, it seems to me, an advantage in carrying on the two theories simultaneously
up to and inclusive of the establishment of what I call the Product-theorem : this is
a natural point of separation for the theories of the single and the double functions
respectively. The ulterior developments of the two theories are indeed -closely

~

MDCCCLXXX. [/

IS4 ()
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Q%;%'?’)
Philosophical Transactions of the Royal Society of London. STOR IS

WWw.jstor.org



898 PROFESSOR A. CAYLEY ON THE SINGLE

analogous to each other; but on the one hand the course of the single theory would
be only with difficulty perceptible in the greater complexity of the double theory ;
and on the other hand we need the single theory as a guide for the course of the
double theory.

I accordingly stop to point out in a general manner the course of the single theory,
and, in connexion with it but more briefly, that of the double theory; and I then, in
the Second and Third Parts respectively, consider in detail the two theories separately ;
first, that of the single functions, and then that of the double functions; the
paragraphs of the Memoir are numbered consecutively.

The definition adopted for the theta-functions differs somewhat from that which is
ordinarily used. ,

The earlier memoirs on the double theta-functions are the well-known ones :—

RosenmAIN, “Mémoire sur les fonctions de deux variables et & quatre périodes, qui
sont les inverses des intégrales ultra-elliptiques de la premiere classe.” [1846.] Paris:
“ Mém. Savans Etrang. xi. (1851), pp. 361-468.

GorEL, ‘Theorize transcendentium Abelianarum primi ordinis adumbratio levis.
“Crelle,” xxxv. (1847), pp. 277-312.

My first paper—CavLEY, “On the Double #-Functions in connexion with a
16-nodal Surface,” ¢Crelle-Borchardt, lIxxxiii. (1877), pp. 210-219—was founded
directly upon these, and was immediately followed by Dr. BorcHARDT'S paper,

Borcuarpt, “Ueber die Darstellung der Kummersche Fliche vierter Ordnung mit
sechzehn Knotenpunkte durch die G'opelschen Relation zwischen vier Theta-functionen
mit zwei Variabeln.” Ditto, pp. 220-233.

My other later papers are contained in the same Journal.

FIRST PART.—INTRODUCTORY.
Definition of the theta-functions.

1. The p-tuple functions depend upon 4p(p-1) parameters which are the co-
efficients of a quadric function of p ultimately disappearing integers, upon p argu-
ments, and upon 2p characters, each =0 or 1, which form the characteristic of the
47 functions ; but it will be sufficient to write down the formulz in the case p=2.

As already mentioned, the adopted definition differs somewhat from that which is
ordinarily used. I use, as will be seen, a quadric function 1(a, 2, bYm, n)* with even
integer values of m, n, instead (a, A, b)Ym, n)* with even or odd values; and I write
the other term Swi(mu-nv) instead of mu-+nv ; this comes to affecting the arguments
u, v with a factor 77, so that the quarter periods (instead of being u7) are made to
be =1.

2. We write

(m, n)____ L(a, b, bYm, 2)?+Lwi(mut-nv),

w, v
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and in like manner

<Zi; Zi@:}f(a, hy BYm4a, 4-B) b { () (u-ty) (n+B) (v+8)},

and prefixing to either of these the functional symbol exp. we have the exponential
of the function in question, that is, e with the function as an exponent.
We then write, as the definition of the double theta-functions,

a, B _ m+e, n+ B
oy Yoz (21327)

where the summation extends to all positive and negative even integer values
(zero included) of m and n respectively : «, B, y, 8§ might denote any quantities what-
ever, but for the theta-functions they are regarded as denoting positive or negative
integers ; this being so, it will appear that the only effect of altering each or any of
them by an even integer is to reverse (it may be) the sign of the function ; and the
distinct functions are consequently the (4°=)16 functions obtained by giving to each
of the quantities «, B3, v, & the two values 0 and 1 successively.

3. We thus have the double theta-functions depending on the parameters («, A, b)
which determine the quadric function (a, &, b Y m, n)? of the disappearing even

integers (m, n) : and on the two arguments (u, v): in the symbol <;’ '88 >, which is called

the characteristic, the characters «, B, y, 8 are each of them =0 or 1; and we thus
have the 16 functions.

The parameters (@, &, b) may be real or imaginary, but they must be such that
reducing each of them to its real part the resulting function ( * Jm, n)? is invariable
in its sign, and negative for all real values of m and n: this is in fact the condition
for the convergency of the series which give the values of the theta-functions.

4. The characteristic <“’ B

” 8) is said to be even or odd according as the sum ay+ 38

is even or odd.

Allved functions.

5. As already remarked, the definition of

(3 )w o

is not restricted to the case where the a, B, vy, § represent integers, and there is
actually occasion to consider functions of this form where they are not integers: in
particular, e, B may be either or each of them of the form, integer -+4. But the
functions thus obtained are not regarded as theta-functions, and the expression theta-
function will consequently not extend to include them.

52z 2
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Properties of the theta-functions : Various sub-headings.
FEven-integer alteration of characters.

6. If «, y be integers, then m, n having the several even integer values from — o
to 4o respectively, it is obvious that m4-a+2x, n+4B42y will have the same
series of values with m—+e, n+ 8 respectively ; and it thence follows that

a2z B+2 o,
.9<ry ad,é? y) (uy v)=£}<% §> (u, v).

Similarly if z, w are integers, then in the function

o
'9<ry+2z S+ 9w> (u, 2)

the argument of the exponential function contains the term
iri{m+tauty+2z4 n+Bo+8+2y};
this differs from its original value by

Tmi(m~+a.22.4 .14 6.2w),
=i (mz+nav) i (az+ Bw),

and then, m and n being even integers, mz~+nw is also an even integer, and the term
mi(mz+nw) does not affect the value of the exponential : we thus introduce into each
term of the series the factor exp. mi(az+Bw), which is in fact =(—)“**; and we
consequently have

3(;4—221 '§+ 2w> (u, ’U):(_)az+l3w'9_<;)’ ?) ('U/, @),

or, uniting the two results,
@ +2x’ '6’+2?/ J— uz+ﬁw
3<'Y+2z, 8 +2w> (v, )= (= ’9 (u v):

this sustains the before-mentioned conclusion that the only distinet functions are the
16 functions obtained by giving to the characters «, B, y, 8 the values 0 and 1
respectively.

Odd-integer alteration of characters.

7. The effect is obviously to interchange the different functions,
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Even and odd functions.

8. It is clear that —m—a, —n—B have precisely the same series of values with
m-+a, n4 B respectively : hence considering the function

9(“1 ’§> (—u, —v)

the linear term in the argument of the exponential may be taken to be

imi{ —m—a.—u+y.+.—n—B.—v+8},
which is

={m{m+aut+y.+.n+pv+8} —mi{m+tay +n+B.8};

the second term is here = —ri(my-+n8)—mi(ay+BS), where my+nd being an even
integer the part —mi(my-+nd) does not alter the value of the exponential : the effect
of the remaining part —i(ay—+B9) is to affect each term of the series with the factor
exp. —mi(oy—+B8), or what is the same thing, exp. 7i(ay+8), each of these being in
fact =(—)=**.
We have thus
92 8) (mu—i)=(=)3( 2 ) (. o),

v, 8

viz., .9<;’ ?) (u, v) is an even or odd function of the two arguments (u, v) conjointly,

. o e 22
according as the characteristic < ’

> is even or odd.
v 6

The quarter-periods unity.

9. Taking z and w integers, we have from the definition

8(;’, §> (u+z, v4w)= 9<;+z: '§+W> (u, v),

viz., the effect of altering the arguments u, v into u+z, v+ w is simply to interchange
the functions as shown by this formula. ‘

If z and w are each of them even, then replacing them by 2z, 2w respectively, we
have

2, B . N ql?® » B
3‘<% 8> (w22, v+2w)_.9<7+ 9, 8+2w> (u, v),
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which by a preceding formula is
— az+puq® B
= (=)ot 3<% 3> (u, v),

or the function is altered at most in its sign. And again writing 2z, 2w for z, w we
have '

3<:: §> (w442, v+4w)=49 <;” §> (u, v).

In reference to the foregoing results we say that the theta-functions have the
quarter-periods (1, 1), the half-periods (2, 2), and the whole periods (4, 4).

The conjoint quarter quasi-periods.

10. Taking x, y integers, we consider the effect of the change, u, v into
+ ot L hatd
0 m,(a.’c—l— ), @)—l—m,( x—+by).
It is convenient to start from the function

9<:°/—x ,g—?/><u +;r17z (az—+Ty), v+ 7%@—_(7196+ by));

the argument of the exponential is here

Ha, h, b][m+la——9c, n+B—y)*
. 1 1
%m{m+oc—ac.u+y-—|—;1~:(aoc+hy).+.n+,8-—y.v+8—|—;i(hm+by)}

which is . )

=2X(a, b, bYm~+o, n+pB)*+im(m~+o.uty. 4.1+ B.v43)
+ other terms which are as follows : viz., they are

—3(a, b, bYm~+a, n+BYx, yv) +Li(m+a.ax+hy. 4 .04 B.ha4-by)

+1(a, b, DYz, y)? —3mi(z.uty.+.y.0+8)

— (. ax+hy.+.y.he+by),

where the terms of the right hand column are in fact

= +X(a, b, BYm~+a, ntBYz, y)
. —3mi(x. w4y~ .y.040)
—¥a, b, VX, 9)?,



AND DOUBLE THETA-FUNCTIONS. 903
and the other terms in question thus reduce themselves to
—XHa, b, DYz, y)* —3imi(e.uty. 4. y.v+8),

which are independent of m, 7, and they thus affect each term of the series with the
same exponential factor. The result is

3<;—w: ,g’—?/)(u_‘_%(aw—l—hy), v+7%.(hm+‘by)>

=exp {—1(a, b, DYz, y>2__-é_7ri(ac.u—|-y.+.y.fv+8)}.9<:‘: 'i)(u, v);

or (what is the same thing) for a, B, writing a-+x, B4y respectively, we have

3(:’ §><u+;1%(ax+hy), v+;rl—z.(hw+ by)>

=-exp { —1(a, &, bYx, y)z—%wi(w.u+7.+.y.v+8)}.9<§+x’, §+?/>(u, v).

Taking @, y even, or writing 2x, 2y for «, ¥, then on the right hand side we have

a2z, B+ 2y sy e ofB
8(7 5 )(u, v), which 1s_3<% 8>(u, v),

but there is still the exponential factor.
11. The formule show that the effect of the change u, » into u+7%; (ax—+hy),

v+7—i—i(hw+ by), where @, y are integers, is to interchange the functions, affecting them

. ' . 1
however with an exponential factor; and we hence say that = (a, h), 7—1,—& (h, b) are con-

joint quarter quasi-periods.

The product-theorem.

12. We multiply two theta-functions

)

? Y
3<:’ '§>(u+u’, v+0'), 9<§,:'§>(u—u', v—1');
it is found that the result is a sum of four products

$(x+ad)+p, $(B+8) +¢' <%(u—a’)+z), %-(B—B’Hq) ' o
®< i sy )(2u,21)) e[ Ty e 2,
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where p, ¢ have in the four products respectively the values (0, 0), (1, 0), (0, 1), and (1, 1);
® is written in place of 9 to denote that the parameters (a, &, b) are to be changed
into (2a, 2h, 2b). It is to be noticed that if «, &’ are both even or both odd then
S(a+a’), H(a—a') are integers; and so if B, B’ are both even or both odd then
5(B+B), £(B—8’) are integers ; and these conditions being satisfied (and in particular
they are so if a=a/, B=p") then the functions on the right hand side of the equation
are theta-functions (with new parameters as already mentioned) ; but if the conditions
are not satisfied, then the functions on the right hand side are only allied functions.
In the applications of the theorem the functions on the right hand side are eliminated
between the different equations, as will appear.

18. The proof is immediate : in the first of the theta-functions the argument of the
exponential is

m+o , n+8
wtu 4oy, v+ +8)°

and in the second, writing m’, n’ instead of m, n, the argument is
s

! 4o , ,n/_l_le/
w—w'+q, v —v'+8)

hence in the product, the argument of the exponential is the sum of these two
functions,

=X(a, b, OYm +a, n 4B +imi(m +a utv'4+y. 4.0 4B .04+0'498)
+x(a, b, DY o, 7' 4 B4 Lmi(m 4o’ u—u' -y 0+ B o—2 4 §).

Comparing herewith the sum of the two functions

ptgata), v+5B+B) (W HEa—d), V+E(B—B))
2uty+y , 204+64+8 )’ 2 +y—y W+ }’

= }(2a, 2h, 2WXp+h(a+o), v+ HB+B))”
Smt{p+i(ado).2uty+y . +v+5(B+B). 204848}
+31(2a, 2k, 20 ' +3(a—0a), vV +1(B—B))
Fimi{p +i(a—a)).20 +y—y. .+ +4(B—0").20'+8—8},
the two sums are identical if only

m—4m'=2u, n+n'=2v,

m—m/=2u, n—n'=2v,



AND DOUBLE THETA.-FUNCTIONS. 905

as may easily be verified by comparing the quadric and linear terms separately. The
product of the two theta-functions is thus

+3a+o), v+1 / [ LHa—a), vV +L(B—F5
=3 exp </2Ln+2§'+fy’ ), 2:—5(86-_;’6 )> - eX(p <gu:l-+2f(y—ry’ ), 2v_’|-:(£—8’6 )>’
with the proper conditions as to the values of g, » and of p/,»" in the two sums respec-
tively. As to this, observe that m, m” are even integers; say for a moment that they
are similar when they are both =0 or both =2 (mod 4), but dissimilar when they are
one of them =0 and the other of them =2 (mod 4); and the like as regards =, .
Hence if m, m' are similar u, u’ are both of them even; but if m, m’ are dissimilar
then p, u’ are both of them odd. And so if n, " are similar, », v" are both of them
even, but if n, n’ are dissimilar then », »" are both odd.
14. There are four cases

m, m' similar,  n, #’ similar,
m, m’ dissimilar, n, n’ similar,
m, m’ similar,  n, n’ dissimilar,

m, m’ dissimilar, n, ' dissimilar,
and in the first of these g, », ', ¢ are all of them even, and the product is

=2 +) HBHEY o Yoma), 3E=B) 19+ o
*—@( y+o, 8+ >(2“’ 20) - ®( y—ry, 6—8 >(2u,2v).

In the second case, writing p+41, p'41 for p, u’ the new values of u, u’ will be both
even, and we have the like expression with only the characters }(a+«), §(a—0a') each
increased by 1; so in the third case we obtain the like expression with only the
characters 3(B+8’), 3(B—pB’) each increased by 1; and in the fourth case the like
expression with the four upper characters each increased by 1. The product of the
two theta-functions is thus equal to the sum of the four products, according to the
theorem.

Résumé of the ulterior theory of the single functions.

15. For the single theta-functions the Product-theorem comprises 16 equations,
and for the double theta-functions, 256 equations: these systems will be given in full
in the sequel. But attending at present to the single functions, I write down here
the first four of the 16 equations, viz.: these are

MDCCOLXXX. 6 A
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0.0 %®w+mﬂ@yWﬂw= XX'+YY,
1.0 9t 91t = YX'4XY
. O » O 99 - + »
0.1 9 L 9Y . = XX-YY,
1 1
1 1 — ’
1.1 I 1 ’ 9] , ==—YX'4+XY';

where X, Y denote ®<g>(2u), ®<3>(2u) respectively, and X', Y’ the same functions

of 2w’ respectively. In the other equations we have on the left hand the product of
different theta-functions of w-+w’, u—u'respectively, and on the right hand expressions
involving other functions, X, Y,, X\, Y,’, &c., of 2u and 2u respectively.

16. By writing «'=0, we have on the left hand, squares or products of theta-
functions of u, and on the right hand expressions containing functions of 2w : in
particular the above equations show that the squares of the four theta-functions are
equal to linear functions of X, Y; that is, there exist between the squared functions
two linear relations: or again, introducing a variable argument , the four squared
functions may be taken to be proportional to linear functions

A(a—2z), B(b—2), E(c—x), B(d—w)

where @, 3, @, B, ¢, b, ¢, d, are constants. This suggests a new notation for the
four functions, viz.: we write

8<8>(u), 9<(1)>(u), 8(2)(%), 9<i>(u)

= Au, Bu, Cu, Du ;
and the result just mentioned then is

Aw + Bw : Cuw : D%
=R (a—2x) : B(b—2) : @(c—x) : P(d—wx),

which expresses that the four functions are the coordinates of a point on a quadri-
quadric curve in ordinary space.
17. The remaining 12 of the 16 equations then contain on the left hand products

such as A(u+u).B(u—u'); and by suitably combining them we obtain equations
such as
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v w—-w' wta w—a!

B.A—-A.B
C.D+D.C

=function (u’),

where for brevity the arguments are written above; viz.,, the numerator of the
fraction is

Bu+u)A(u—u")—A(u+u)Bu—v),
and its denominator is

C(u+v)D(v—u")+D(u+u)Clu—v).

Admitting the form of the equation, the value of the function of # is at once found
by writing in the equation w=0; it is, as it ought to be, a function vanishing for
w'=0.
18. Take in this equation v’ indefinitely small; each side divides by «’, and the
resulting equation is
AuB'u—Bud’y

C;;]);;(,Jw =const.

where A’u, By are the derived functions, or differential coefficients in regard to w.
It thus appears that the combination AuB'u—BuA'w is a constant multiple of CuDu:
or, what is the same thing, that the differential coefficient of the quotient-function
Bu Cu Du
E K_u and Xl_&

19. And then substituting for the several quotient-functions their values in terms
of @, we obtain a differential relation between 2, % ; viz.: the form hereof is

is a constant multiple of the product of the two quotient-functions

Mdaw
y b
v o—ub—zc—xd—2x

du=

and it thus appears that the quotient-functions are in fact elliptic-functions: the
actual values as obtained in the sequel are

1
snKu= — ﬁDu =+ Cu,
¥
enKu= 7Bu +Cu,

dnKu= VEAu+Cu

and we thus of course identify the functions Aw, Bu, Cu, Du with the H and ® of
JACOBL
20. If in the above-mentioned four equations we write first ¥=0, and then «'=0,
and by means of the results eliminate from the original equations the quantities
6 A 2
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X, Y, X!, Y’ which occur therein, we obtain expressions for the four products such as
A(u4u)A(u—u"). One of these equations is

C20.0(u+1/)Cu—u) = CouC/ ~ DD/,

Taking herein %" indefinitely small, we obtain

00 \Cco) CW

CuC"u—(C'u)® _ C”0  (D'0\?* D
Coy T Co

2
where the left hand side is in fact Elcz% log Cu, or this second derived function of the

Du
Cu
twice, and taking the exponential of each side we obtain Cu as an exponential the

theta-function Cu is given in terms of the quotient-function =—: hence integrating

2,
argument of which contains the double integral ”%%(du)z, of a squared quotient-

function. This in fact corresponds to JACOBI'S equation

Ou= /\/2K7’3,6%u2(1—l§<)_knjudujotlusngM‘
i

21. From the same equation C0.Cu+v)Clu—u') =CuC?'—D*uD%/, differen-
tiating logarithmically in regard to «/, and integrating in regard to u, we obtain an

equation containing on the left hand side a term log g(u—_u:), and on the right hand
q g S Clu+u) g

an integral in regard to u, and which in fact corresponds to JACOBI'S equation

Bu—a
®Eu+—a%= O(u, a),

@'
You T % log

___.[ snacnadnesnudy
Ty 1—k?snasn®u

22. It may further be noticed that if in the equation in question, and in the three
other equations of the system, we introduce into the integral the variable # in place
of u, and the corresponding quantity & in place of u’, then the integral is that of an
expression such as

dx
T\/a-m.b-x.c—-w.d--x’

where T is =z —§, or is = any one of three forms such as

1’ m+f’ xf
1, a+b, ab
1, ¢c+4d, cd |
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Résumé of the ulterior theory of the double functions.

23. The ulterior theory of the double functions is intended to be carried out on the
like plan. As regards these, it is to be observed here that we have not only the
16 equations leading to linear relations between the squared functions, but that the
remaining 240 equations lead also to linear relations between binary products of
different functions. We have thus between the 16 functions a system of quadric
relations, which in fact determine the ratios of the 16 functions in terms of two
variable parameters @, y. (The 16 functions are thus the coordinates of a point on
a quadri-quadric two-fold locus in 15-dimensional space.) The forms depend upon six
constants, a, b, ¢, d, e, f: and writing for shortness

Va= —wa—y,

1 ‘
\/O.Lb-—w":?"/{ Va—ab—xf—xc—y.d—y.e—y+ v a—yb—yf—y.c—x.d—x.c—ux},

(observe that in the symbols +/ab it is always f that accompanies the two expressed
letters a, b—or, what is the same thing, the duad ab is really an abbreviation for the
double triad abf.cde) ; then the 16 functions are proportional to properly determined
constant multiples of

Va, Vb, A0, N d, e, NV ab, e,V ad, Vae, be, /b, /be, v/ ed, v/ ce, v/ de,

and this suggeéts that the functions shall be represented by the single and double letter
notation A(u, ), .. AB(u, v) . .. viz, if for shortness the arguments are omitted, then
we have

A, B, ¢, D, E, F, AB, AC, AD, AE, BC, BD, BE, CD, CE, DE

proportional to determinate constant multiples of the before-mentioned functions
Va, .. /ab,...of zand y.

24. Tt is interesting to notice why in the expressions for v/ab, &c., the sign con-
necting the two radicals is + ; the effect of the interchange of z,  is in fact to change
(v, v) into (—u, —v) ; consequently to change the sign of the odd functions, and to
leave unaltered those of the even functions: the interchange does in fact leave +/a,
&e., unaltered, while it changes v/ab, &c., into —+/ab, &e. ; and thus, since only the
ratios are attended to, there is a change of sign as there should be.

25. The equations of the product-theorem lead to expressions for

wtu w—u! utuw u—u

A.B —B.A,
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(where the arguments, written above, are used to denote the fwo arguments, viz. :
4w’ to denote (u+4w’, v+v") and u—u’ to denote (u—wu', v—2’); and where the
letters A, B denote each or either of them a single or double letter) in terms of the
functions of (v, v) and of (v, ') : and in any such expression taking u’, v" each of them
indefinitely small, but with their ratio arbitrary, we obtain the value of

AoB—B.A,
(viz., u here stands for the two arguments (u, v), and d denotes total differentiation
bA:duo—ld—uA(u, v) -{-OZ_U%A(M, v)) as a quadric function of the functions of (u, v): or

dividing by A?, the form is bi—:a function of the quotient-functions %, &e., that is, we

have the differentials of the quotient-functions in terms of the quotient-functions
themselves. Substituting for the quotient-functions their values in terms of x, ¥y, we
should obtain the differential relations between dix, dy, du, dv, viz., putting for
shortness X=a—x.b—a.c—x.d—x.e—af—x, and Y=a—y.b—y.c—y.d—y.e—y.f—y,

these are of the form
dx dy xdx  ydy

VXTVY VXTVY

each of them equal to a linear function of du and dv: so that the quotient-functions are
dzx wdx
7o %
is thus an addition-theorem for them, in accordance with the theory of these integrals.

26. The first 16 equations of the product-theorem, putting therein first u=0, v=0,
and then =0, v"=0, and using the results to eliminate the functions on the right
hand side, give expressions for

in fact the 15 hyper-elliptic functions belonging to the integrals f and there

utu! w—u!

A . B, &c.
(that is, A(u+u', v4+v).B(u—u/, v—2/) &c.) in terms of the functions of (v, v) and
(w', ¥") : and we have thus an addition-with-subtraction theorem for the double theta-

functions. And we have thence also consequences analogous to those which present
themselves in the theory of the single functions.

Remark as to notation.
27. I remark as regards the single theta-functions that the characteristics
o ) G )
0 0 1 1
might for shortness be represented by a series of current numbers
0, 1, 2, 3
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and the functions be accordingly called 9u, $,u, I,u, I5u; but that instead of this I
prefer to use throughout the before-mentioned functional symbols

A, B, C, D.
As regards the double functions, I do, however, denote the characteristics

00 10 01 11 00 10 01 il 00 10, 01 11 00 10 01 11
00" 00" 00 00 100 10 10" 10 01’ 01 o1 o1 117 117 110 11

by a series of current numbers

0, 1, 2, 3, 4, 5, 6, T, 8, 9, 10, 11, 12, 13, 14, 15
and write the functions as 3, 3, . . . 9,; accordingly ; and I use also, as and when it is
convenient, the foregoing single and double letter notation A, AB,.., which

correspond to them in the order
BD, CE, CD, BE, AC, C, AB, B, BC, DE, F, A, AD, D, E, AE

Moreover I write down for the most part a single argument only: thus, A(u+w)
stands for A(u4u’, v+v'), A(0) for A(0, 0) : and so in other cases.

SECOND PART.—THE SINGLE THETA-FUNCTIONS.
Notation, dc.

28. Writing exp. a=g, and converting the exponentials into circular functions, we
have directly from the definition

Sg(u)=9u=Au=1+2q cos mu—~+2q* cos 2mru—+2¢° cos 3Tu+ ..,
93(u)=91u=]3u= 2¢ cos Smu—+24* cos Smu—4-2¢% cos STu+ . .,
32(@&):32@6:0@0: 1—2q cos mu-+2¢* cos 2mu—24° cos 3ru-t . . (=0(Kwu), Jacosi),

31 w)=9%,u=Du= —2¢ sin Lru42¢*sin 37u—2¢* cos 3ru+ .. (=—H(Ku ,JACOBI ,
1 3 q 3 T q

where « is of the form a=—a-pBi, o being non-evanescent and positive: hence
q= exp. (—a+pBi)=e*(cos B+ sin B), where ¢, the modulus of ¢ is positive and
less than 1; cos 8 may be either positive or negative, and ¢* is written to denote
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exp. +(—a-+Br), viz. : this is =e™**{cos 1B} sin £B}. But usually 8=0, viz, ¢ is a

real positive quantity less than 1, and ¢* denotes the real fourth root of ¢.

I have given above the three notations, but as already mentioned propose to employ
for the four functions the notation Aw, Bu, Cu, Du: it will be observed that Du is an

odd function, but that Awu, Bu, Cu are even functions of .

The constants of the theory.

29. We have
A0=1+42¢+2¢"+2¢"+ .. ,
Bo=  2¢*4+-2¢42¢54 ..,
Co=1—2¢42¢*—2¢°+ .. ,
D0=0 ,
Do=—n{¢*—38¢ =595— .. }.

If, as definitions of £, ¥/, K, we assume

B?0 C0 A0 DO

A0 " T A T B0 €0

then we have

. [ 14+ .. 1? —
/c=4\/q{~l—+-%_;2q—¢ji} | =4/g(l—dg+14g4 . ),

e _1"29+294°"‘"12 — 2_, 3
K= {w1+2q+2g4+.. , =1—8¢+32¢°—96¢3+ . .,

m(1+2¢+2¢4+ . . )(1—3¢*+5¢5— ..
=T R g AT

K

where I have added the first few terms of the expansions of these quantities.

have identically
B+E?=1.

It will be convenient to write also as the definition of E,

¢’0
K(K_E)—-CF :
we have then
c”0 1

1
E—'K"ii 0~ T A0.B0.CO.D’0

{ — A% (D0)2+ B20.C0.C"0},

and moreover

E 100 27q—4¢*+99°— ..
—_——rm ) ==t

K K? Co K? 1—-2¢+2¢"+ ..

1

We
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giving

E 2
= 1—8q+448¢*—224¢°4 .

and thence
E=4n{1—49+209*—64¢°+ . . }.

30. Other formulee are

14+¢*149". . ]

k=4 { }
Vi T+gl4q".

—0l—g. 14

W= {LIILFIT;},
1+q91+4%..

1+¢1+¢°. . 1—¢°1—¢*.. ]2
K= 2”{1—9.1—93..1+92‘1+g4..}

31. Jacosr's definition of ¢ is from a different point of view altogether, viz., we
{,

have g= exp. — T

, where

and K’ is the like function of ¥’; the equation gives log g= -—7%—; viz., we have
=K
K= — log ¢,

and, regarding herein K as a given function of ¢, this equation gives K’ as a function

of g.

The product-theorem.

82. The product-theorem is
a ’ o ) 5o +0¢) L(o— ) -(a+a’)+1 Ha—a')+1 ,
,9<W>(u+u).,9<’y,>(u u)=®0 < oty >2 @( ey >2 +®< Yo >2u.®< ey )21&,

’
o o 22 o s . o
and here giving to y “  their different values, and introducing unaccented and
v

accented capitals to denote the functions of 2u and 2u’ respectively, the 16 equations are
MDCCCLXXX. 6 B
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AA Ggu—l—u’ﬂ-gu—u’: XX 4+YY/, (square-set)
B.B 9 9 . = YX' 4XY,
[eXe 9 .9 L = XX YV,
. 1 1 ,
D.D Yo 9, =YX XY
C.A 9(1)u—|-u’38u-—u’: XX/ +YY)/, (first product-set)
O O 7 ’
AC O T XX =YY/,
1 1 , ,
D.B Ko Yy s = Y X +XY,,
1 1 ,
B.D T S YX, —=XY/;
B.A ‘}} ol S(O)u— = PP 4+QQ, (second product-set)
AB 90 L 8 ., = PQ +QP,
1 0 T sV
D.O '9‘1 2 '9'1 3 == /I’PP —ZQQ 2
0 1 " Py
c.D ,91 ), 91 ,, = 1PQ —iQP;
DA Sjutudu—u'= PP/ +QQ,  (third productset)
0 1 . |
A.D Sy » 9 . = PQ/—IQP)
B.C sé L)L =P P QQ),
0 1 , ,
C.B Y ow Yy o o= PQIAQP/

33. Here, and subsequently, we have

ol 0,000 () =X, Y,X, Y, | ol elelele=pr QF,Q
29 93 29 93 (2u,>:X,7 Y/J X/,) Y// 22 9 22 b3 (27]//) =P,7 Q/) P/,’ Q/’
23 3] 99 i) (0) =, 187 e, B, | 93 55 99 99 (0) :pn qa p,: q/

viz., we use also a, 8, «,, B, and p, q, p,, q, to denote the zero-functions; B, is =0, but

a
we use 8/ to denote the zero-value of -~ Y,.
/ du !
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34. For obtaining the foregoing relations it 18 necessary to observe that

a+2=®u .
v Y

®

by which the upper character is always reduced to 0, 1, & or § ; and that for reducing
the lower character we have

0 0 1 1

® =0 ;06 = —0 ;

v+2 o Ty Ty+2 v
®° _—=i0% 0° —=—i®°; 0’ —=—0°, 0> _—i®;
v+2 v =2 v y+2 v v—2 v

by means of which the lower character is always reduced to 0 or 1: in all these
formulee the argument is arbitrary, and it is thus =2u, or 2u" as the case requires.
The formulse are obtained without difficulty directly from the definition of the
functions @.

’

. . o
35. As an instance, taking Y “

10 .
WattRY the product-equation is

i 1 3 3
31 (u —I—u').\(}(;(u—u’.;: ®§(2u).8(2u’)—|— ®;(2u).®8(2u’),

3 3 3 3
:z®8(2u).8(2u ) —z®5(2u). 6(2u’),
—=iP.P —iQ.,
which agrees with the before-given value.

36. The following values are not actually required, but I give them to fix the ideas,
and show the meaning of the quantities with which we work.

X =@)g(2u)=1+2g9 cos 27u~+2¢° cos dmu- . ., a =1 +2¢*+2¢°+ . .,
Y ::@)é(%): 2¢* cos  mu+2¢* cos Bru- . ., B = 2¢¢4+2¢°+ . .,

0
X,=®1(2u):1-—29‘~’ cos 2mu+2¢® cos dmu+t . ., o, =1— 2¢°4+2¢°.. ,

1 . o . . 7 1 s
Y,=®1(2u)= —2¢* sin wu+2¢* sin3wut .., | B'=2x(— ¢+ 3¢}—..)

Ay o
=Y, for u=0.
da
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']:‘ . . 2 . .
P =6 g(Zu) =¢*(cos dmu—ti sin Ymu) +q'(cos Smu—< sin Swu)
“+q%(cos Smu1isin Jmu)+ ..,
Q :@3( 2u)=q*(cos dmu—1 sin Laru)+qH(cos Fru-t7 sin $mu)
+q¥(cos Smu—1isin Jmu)+ . .,
P — b2 = haos Lo in 1 ey
=02(2u) =37 Y(cos mu -1 sin Faru) —q¥(cos Smu—1 sin Smu)
—q*(cos Smuti sin Smu) -+ .,
1—4 .. .
Q=06 1(21&) \/2% { q*(cos 3t —1 sin Smu)—g(cos Jrut1 sin $rru)
—q* (cos 3mu—1 sin Smu)++ .
and therefore also

p=q=¢"+¢'+q"

144 23 9 s 1 .
\/2{9 —7 Q”+9“+’1“"—-—'--},q, JZ{DO} P, =1,

The square set, W'==0; and wx-formule.

37. We use the square-set, in the first instance by writing therein u'=0;

equations become

A= aX+BY, =o*&(a—x),

Bu=BX-+aY, =u®3B(b—2z),
Cu=aX—BY, =’ (c —ux),
Du=pX—aY, =B (d—2x),

the

viz., the equations without their last members show that there exist functions w? and
2o linear functions of X and Y, such that @, 33, &, B, Ko, Wb, Cc, PWd, being
constants, the squared functions may be assumed equal to a.0*—. 0%, &c., that is,

o*R(a—1x), &ec., respectively : the squared functions are then propor twnal to the values

A(a—uwx), &e.

To show the meaning of the factor % observe that from any two of the equations,
for instance the first and second, we have an equation without », A% -+Bu=%(a—x)
+W(b—w); and wusing this to determine x, and then substituting in o’=A% -+

@ (—wx), we find ,
o A2 —AB
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where the numerator is a function not in anywise more important than any other
linear function of A*u and Bu.

38. The function Du vanishes for u=0, and we may assume that the corresponding
value of # is =d. Writing in the other equations u=0, they become

AN =(a+B) =0, A (a—d),
B= 208 =oB(b—Jd),
C= o*—B =0T (c—d),

where wy® is what »® becomes on writing therein z=d. It is convenient to omit
altogether these factors ® and wy®; it being understood that without them, the equa-~
tions denote not absolute equalities, but only equalities of ratios: thus, without the
w,’, the last-mentioned equations would denote A*0: B*0: C*0=a’4+£%: 2¢8: «®— 3,
=@ (a—d): B(b—d): €(c—d). The quantities A, 33, €, I only present themselves
in the products Xw?, &c., and their absolute magnitudes are therefore essentially
indeterminate, but regarding »® as containing a constant factor of properly determined
value, the absolute values of @, 38, €, I may be regarded as determinate, and this
is accordingly done in the formule @*= —agh, &c., which follow.

Relations between the constants.

39. The formulee contain the differences of the quantities a, b, ¢, d ; denoting these
differences in the usual manner

b—e¢, c—a, a—b, a—d, b—d, c—d

by
a, b, ¢, f,‘ g, h

so that
. —h +4g —a=0,
h . —f —b=0,
—g+4f . —c=0,
a +b +4c¢ . =0,

and also

af+bg+ch =0,

and then assuming the absolute value of one of the quantities @, 38, €, I, we have
the system of relations ‘
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@?= —agh, Ba= QADS, Abcf = —BED, AW ID=abefgh,
2= bhf, CAb=—WiDg, Weag= @AD,
@= cfg, Adc = — TIDBh, abh= @AIBD,
D= —abe, | Dioh = — ABC,

A+ 0@ — 13D =Dbet (af+bg+-ch), =0,
— PR . a2@— o TD%=cag ( . ), =0,
—b*A? 42735 . —h¥3DP=abh( N ), =0,
— A+ "3+ h @ . =fgh( . ), =0.

It is to be remarked that taking ¢, a, b, d in the order of decreasing magnitude we
have —a, b, ¢, f, g, h all positive ; hence @?, 38*> @7, ID* all real; and taking as we
may do, 3B negative, then @, I, € may be taken positive ; that is we have—a, b, c,
f, g, h, A, 33, €,—7D all of them positive.

40. We have
A=+ B =Af,

B0= 2«8 =3¢,
D0=a’—B*=¢h.

The foregoing equations

B0 , G20
b= F= e
give
. 0 @
== Qf’ v = (,al s

and we thence have

; 1 P
==, k= j—;—f, satisfying F*-£?=1.

41. Observe further that substituting for a, b, ¢, f, g, h their values, we have

A= —~b.b —d.c —d, = c¢—d.d—D.b —c,
Br=c—a.c=—d.a—d, = d—a.a—c.c—d,
P=aq—b.a—d.b —d, = —.a—b.b —d.d—a,
PBl=c —b.c—a.a —b, =—.b—c.c —a.a—D,

where in the first set of values all the differences are positive, but in the second
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set of values, we take the triads of abed, in the cyclical order bed, cda, abe. There is
in this last form an apparent want of symmetry as to the signs (viz. : the order which
might have been expected is 4 —-—), but taking the order of the letters to be
@€, A33,1D and c,a,b,d, then the cyclical arrangement is

@ =—b—d.d—a.a—D.
A= —.d—c.c —b.b—d.
Bl=— —.c —a.a—d.d—c.
D= —.a—0.b —c.c —a.

where the four outside signs are all —.  Observe that the triads of abed, and abde, are

bed, cda, dab, abe,
and bde, dca, cab, abd,

where in the first and second columns the terms of the same column correspond to
each other with a reversal of sign, whereas in the third and fourth columns the lower
term of either column corresponds to the upper term of the other coluinn, but without
a reversal of sign.

The product-sets, u41': and v indefinitely small, defferential formule.

42. Coming now to the product-sets, these may be written

wtu w—u' u+u w—-r wtu u—w'  udu u—u
LCA + AC}=XX’, 1ICA — AC}=YY),
L{D.B + BD}=YX/ L{D.B — BD}=XY/,

HBA + AB}= (P+Q)(P’+Q’), $3{BA — AB}= (P-Q)P —-Q)

S{D.C + CD}= (P —-Q)P +Q) | ,{DC — CDi= «(P+Q)F —Q)
) )
Q)

}DA + AD}= (ﬂQ&%Q%%wAmADh (P,+iQ)(P,/—iQ,),
L{(B.C + CB}=—i(P,

(P/+iQ,), | ,{B.C — CB}=—i(P,—iQ)([P,/—iQ,).

43. We can from each set form two fractions (each of them a function of u-u" and
u—1"), which are equal to one and the same function of " only: for instance, from the

’

first set we have two fractions, each : putting in such equation w=0, we obtain a

new expression for the function ot o mvolvmg only the theta~functions Aw/, &e.,



920 PROFESSOR A. CAYLEY ON THE SINGLE

which new expression we may then substitute in the equations first obtained: we
thus arrive at the six equations

wtw w—w  wtw - wtw u—w b u—u

C.A—A.C DB—-BD DuBu
D.B-i—B.D C.A+A.C  OwAd

B.A—A.B DC——(/D DuCu
D.C+C.D~ B.A+A.B BuAu

B.C-C.B __ D.A-A.D DuAu
D.A+A.D P(;+C BT Bu.Cu”’

where observe that the expressions all vanish for «'=0.
44. Taking herein «’ indefinitely small we obtain

Au.Cu—Cul'v, _ Bu. D'u—DuBu D 0.B0__ K}“)QO
Bu.Du - Cu.Aw (/ 0. AO A2
AuBu —BuA'u__ CuD'u—Du.Cw _D'0.CO K 91)
- CuDu Cu.Bu T A0BO T A

Cu.B" —Bu.C’u__Au,,D'u—Dn.A'u_T)’O.AO__ K
AuDu - Bu Cu —Boco 7

where the last column is added in order to introduce K in place of D’0.
45. These formulee in effect give the derivatives of the quotient-functions in terms of
quotient-functions : for instance, one of the equations is

d Du__ Bu Cu .

du Au A Au

substituting herein for the quotient-fractions their values in terms of , this becomes

d d —%__ K/\/%QD \/b xr.e—x ——K f\/b—m_c—;,(z,

duw ’

a a—2
. —i de
or the left hand being = i this is
Kdu-—— l\/ai dx

N @=—z.b—z.c—xd— —

where on the right hand side it would be better to write o/ —~af in the numerator, and
x—d in place of d— in the denominator.
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Comparison with JACOBL

46. The comparison of the formulee with Jacosr gives

SnKu——-;/z Du+Cu, = /\/ g ET <or better \/ /\/ ''''' >
cnKu= M%B’ca+0u, = ,\/g /\/i_:%

doKu= /¥Au-+Cu, =,\/1_l a—2,

C—x

where 1t will be recollected that

P b . ch.

—af’ —af

It may be remarked that we seek to determine everything in terms of a, b, ¢, d.
The formula just written down, k*=bg+ —af, gives k in terms of these quantities ;
and £, K being each given in terms of g, we have virtually K as a function of £, that
18 of a, b, ¢, d: but it would not be easy from the expressions of %, K each in terms

of ¢, to deduce the actual expression K= F . — of K as a function of %
08/ 1=/ sin? ¢ sin®

The square-set, u+u.

47. Reverting to the square-set

Autu)Au—uw)= XX'+YY,
Bu+v)Bu—u)= YX'+XY/,
Clut+uv)Cu—u)= XX'-YY,

D(u4v)D(y—u)=—YX'4+XY’,

if we first write herein 4'=0, and then 4=0, using the results to determine the values

of X, Y, X', Y we find

aCu— D= (a2 — )X, | wChf — BD = (o — B X'
BCy—aDu= , Y, BCW —aDw'= Y/,
and thence

MDCCCLXXX, 6 ¢
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(=B XX = CuC?' + B D*u D% — aB(CPu D>+ D*uC%/),
s YY,=Bz 2 +°‘2' » _aB I H
whence
(*—= B XX+ YY) = (a4 B)(C*uC? + D*u D) — 20 3(CPu D*’ + D2uCPv'),
(=B (XX'=YY)= (CouC/ — DD,

(where observe that in taking the difference the right hand side becomes divisible by
a?— 3% and therefore in the final result we have on the left hand side the simple factor
o?— 3 instead of (a?— B%)?).
Similarly
(> —B) Y X' =aB(C*uC’ + DuD') — a*D*uCu’ — B*CPuD™y,

2 XY/’:'“:B ” _BZ 2 —a® » )

and thence

(@@= YX'+XY) =208(C2uC +DuD) — (224 (CuD + D2uC),

(=B (—YX'4XY) = DWuCw'—CuD%/,
48. Hence recollecting that
A0=0'+,
B0 =2ap,
CP0=02— 3,

the original equations become

C*0. A (utu)A (u—u) =A0(CuC?u' 4+ D*uD%) — B*0(C*u D’ + D*uC'),

C*0.B(u+u)B (u—u)=B0(C*uC 4 DuD%') — A%0 (C*u D%/’ 4+ D*uC),
C0.0u+v)C (u—uv)=  CuCqw'—DuD/,
C%0.D(u+v")D(w—u)= D2uC’— CPuD.

49. It will be observed that the four products A(u+u')A(v—u'), &c., are each of
them expressed in terms of CPu, D, C%/, D*/. Since each of the squared functions
APy, B, C'u, D is a linear function of any two of them, and the like as regards
A/, B/ ,C/, D™/, it is clear that in each equation we can on the right hand side
introduce any two at pleasure of the squared functions of u, and any two at pleasure
of the squared functions of . But all the forms so obtained are of course identical if,
taking o’ the same function of «’ that x is of u, we introduce on the right hand side
x, «’ instead of u, «"; and the values of A(u-+u').A(u—u') are found to be equal to
multiples of v, v, V,, Vs, Where '
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v=x—u'v,=| 1, a4, a2’ |, v,=| 1, a4, a2’ |, vy=| 1, x4+, ax’ |
1, ad, ad 1, b+d, bd | L edd, od
1, b4e¢, be 1, ¢e4d, cd V1, atb, ab

50. In fact, from the equations A2u=R(a—wx), A*w'=@(a—x') we have

1 9/ < 7 DI ’

v= M(B?’u()m —CuB%), = m((} A — AuCW), = M@Ajﬁ (A*uBw' —BruA®w),
E 9 7 1 b ’ 0 o 7

fﬁ%<A2uD2u —D*uA%), #ﬁ(BzuD% —D%uB), =m(CzuD2u —DuC’),

where it will be recollected that f@AIB=a33¢, —giﬁm @R, —h@ID=cAWB.

Moreover

(b—c)vi=—| b—rb—2, c—a.c—a’ |, (a—d)v,=| a—w.a—2, d—ax.d—a |,
b—a.b—d, c—a.c—d a—b.a—c, d—b.d—c

(c—a)Vy=—| c—a.c—2, a—xa—2' |, (b—d)y,=| b—x.b—a', d—x.d—2’ |,
¢c—b.c—d, a—b.a—d b—c.b—a, d—c.b—a

(a=b)vy=—| a—z.a—a, b—ub—2 |, (c—d)vs=| c—a.c—a', d—x.d—2" |,
t—c.ad—d, b—c.b—d c—a.c—d, d—a.d—b

or as these may be written
v1=——1{{bh. b-—w.b—m’.—l—cg.c—xc '}, = {gh a—xz.a—x' . +be.d—x.d—a'},
Vo= ——{cf c—x.c—a . Fah.a—xr.a—ax'} —{hf b—x.b—uo.+ ca.d—a.d—a'},

—{ag a—x.a—a.+bf.b—x.b—a'} ——{fg c—w.c—&.+ab.d—rd—a'},

that is
v,=— {bh BuB% L'+ CQuCzu } = {"AQ uA* 0/+ - DDA |
1 B a o I
1fef , . ah , 1( hf
Vo= —B{@Eczu(yu +@A%¢A2u } —é{%‘*’BQ uB +ﬁ5D22LD2u }
Vy=— { %71{% (A% 4 @2B2u B/ } =ll{ L CPu G/ —|— D° D }
or finally

6 ¢ 2
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v,= -—;1{( BB 4 CuC), = — 1t (A*uA* 4+ DDy,

a

1 Vs 1 [y /7 by A
Vo= — ]3;( CruCu' — AuA™),= B;(BZMB% —D%uD),
. o

e}

7 1 0 7 D ’
V3=—Clh (—AuA% +BuB%'),= 0 (CuC?’ — DD/,
51. Hence v, v,, V,, V5 denoting these functions of «, @’ or of u, u’, we have

y n_4

A(u4u)A(u—u )= Vo
el
/ N

Bu+u)B(u—u ):B—f Vo,

Clu+w)Clu—u) =g Vs
D(u+v)D(u—u")=3Dv.

The square-set w41, v’ indefinately small: differential formule of the second order.

52. T consider the original form
COC(u+v)C(u—u")=CuC* — DD/,

(which is of course included in the last-mentioned equations).
Writing this in the form

CroCu+IC=) _ DD

Cy o
and taking u" indefinitely small, whence

Clu4v")=Cu+2'Cu+3u?C"u, Cu'=C0,
Clu—u)=Cu—u'Cu4Lu*C"y, Du'= w'D’0,
Cu+v)Clu—u)=Clu4u?{CuCu— (Cu)?l,

the equation becomes

b o] Cu_ (Cu\ N\ _ ’ % R
uo<1+u {G—<@> }>_020+uz{000 0—(D0pg |

that is

Cu

C"u  (C'u\?> _C"0 /D'0\* D%
—Co

Cre o C’
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d 2
viz., we have ( d1> log Cu expressed in terms of the quotient-function (]))2 , and conse-

quently Cu given as an exponential, the argument of which depends on the double
. D
integral fdu{du o

53. To complete the result I write the equation in the form

O”O 1 D0 D’0 B
[

C’g is =—4/kK, and %—09 is =K(K—E); hence the equation is
Dy E
_— =K 1l—=F — ] I [pS— (e
loq Cu=K <1 —k c2u> =K <1 % k’sn Ku),

or integrating twice, observing that 7 log Cu and log Cu, for u=0, become =0 and

log CO respectively,

E
= 11— 22— % 2an2
log Cu= log C0O4-} <1 K) K22 —k Ldu.(oduK sn®Ku,
which is in fact

log ®(Ku)=1log CO+44 <1 ——!]%> K%ﬂ-—kzLduLolquanKu,

agreeing with JACOBI'S

o

[

— BN i o
log ®u=log ®044% <1 K> u kzjoduyodu sn.

Elliptic integrals of the third kind.

54. We may write

A(u+uw)A(u—w) Vi,
A A %(’h a—a.a—x

Bu+w')Blu—w') -V
BQ’UIBZ'HI aﬁhf b —X. b x

Clu+u)Cu—w') 1 _YS., —
2,02 QLfcr c—x.c—

D(u+w)Dw—w) _ 1 H’

D2 D2y’ D d— wd—a
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We differentiate logarithmically in regard to 2. Observing that

— 2'\/vfda' 2\/&f ,
Ku'= Va~alb—ofc—a'd—a” ~ /X v

suppose, the first equation gives

Ay G Allw—w) A (u+u’) K\/ X' d AZ3
iy —% o log 7 s
Auw TRAAtw)  RAwAw) T af de O a—d

and if for a moment

v = |1, z4a, xx’ |, is put =P(a—a')+Q(d—2z"),
1, a+4d, ad
1, b+ec, be
then

& 1 f—l—lo < ”’> is _Qd-e) _ _ QF |
8 i Ta7 18 T a-)w) T (a=)wy

But writing '=a we have

1, a4, ax |,
1, at-d, ad

Q(d—OL), = _Qf:

that is, Qf= —be(d—z), or
Vl bc(d - )

’ lo (““w)Vl

Hence the equation is

A  Alu—u) A’(u+u’)_2Kbc«/

2 A(W) T Au—u) " Aw+u) T /af (a— a:’)vll
and similarly ,
B (), Bw—u) Blutw) 2Kea
B(u’) +B(u~- w) Blutw)  4/af VX (b x)vq

C(u) Clu—u) Cutvu) 2Kab &, d—=
C(u) +C(u—u) Clu+u) \/ai VX (c—x’)v;

D(u) D'(u—u') D'(u+w) ,
D(u +D(u——u) D(u+u') \/af VX (d— x’)(w Z)

d. . .
55. Multiply each of these equations by du, ::%‘-%i \/9;-(, and integrate.

equations such as

=(a—"b)(a—c)(d—x), =—bec(d—x),

We have
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A'(w) Alu— bey/X' (d—w)d&c
Wy T OgA(u+ ) OonSb+\/af(a-—x),[ v/ X

showing how the integrals of the third kind

f(d—w)dx j(d-—x)dx j‘(d—w)dx '{ (d—a)dax
viv'X ’ sz\/ﬂX—’ vsv/' X T le-2)/X

depend on the theta-functions.
If, instead, we work with the original equation

% Clu+u)Clu—u) —1— D2 DQu
Cu.C/ 0 Cu G/
we find in the same way

Cw) Cu—v) Cu+tw)  d loo (1 DD/
C) " Clu—u) T Clu+)T dw ° T CuC/

d

=—- log (1—#*sn*Ku sn’Kuv’),

du’

2/2KsnKao/'en Ko/ dnKuw'sn? K,
1 —/i%sn?Ku'sn*Ku

or multiplying by 3du and integrating

)
)

C(u—-u’) j‘ 7»~snKu enKuw'dnKe'sn*Ku. Kdu ’

Oy T2 (“(z&+10')

- 7o~sn9Ku sn?Ku

which is in fact JACOBI'S equation

Oa, ,; Ol—a) v( snegenadnasnudy
U, T2108 Outa) » =1I(u, a).

1 —%*sn’a snu
I do not effect the operation but consider the forms first obtained,
A ’ 4 —_g &
(utuw)A(u—u )-.-g——h v, &e.,

as the equivalent of JAcOBI's Jast-mentioned equation.

Addition-formule.

927

56. The addition-theorem for the quotient-functions is of course given by means of
the theorem for the elliptic functions : but more elegantly by the formule relating to
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the form da + 7/ a—x.b—x.c—x.d—x obtained in my paper ““On the Double S-Functions ?
(‘ Crelle-Borchardt,” tom. 87 (1879), pp. 74-81), viz.: for the differential equation

d dz
Y =0,

Vi sV

to obtain the particular integral which for y=d reduces itself to z=x, we must, in the
formulee of the paper just referred to, interchange ¢ and d: and writing for shortness
a, b, ¢, d=a—wx, b—=x, c—x, d—x, and similarly a, b, ¢, d, =a—y, b—y, c—y, d—1y,
then when the interchange is made, the formule become

/\/ti%/ ! b—z
a—=z a—z

d b
= \éd_b'd*"’{ v/adb e, + \/a/d,bc}’ —c)y/abab,+ (b—d)4/cded,} ’
(be, ad) (be, ad)
d=b; ,—0——
_Wd—bd—c(z—y) _Naiza bda,c—+/b,d,ac }
v/ adb,c,—1/ad be - v/adb,c,~—+/a,d be

/\/@(ac bol)
_Vd— bd—c{Mde,a,+\/bdca} _ d—a>""

(d—c)4/ aba,b, — (b—a)4/cde,d, T (d—c)y/abab, — (b—a)/cde,d,

g:—Z{(d—a) v/beb,c+ (b—c)4/aba b, }
(d—b)+/acac,—(c—a)4/Ddb,d,

_W/d—bd—c{,/cdab,++/abe,d }
T (d—b)y/aca,c,—(c—a)y/bdbd, ’

C—z

a—2z

d——c

{(d b)+/cac,a, + c—a)\/bdbd}
(be, ad)

/\//C-Z——{«/cda «/abc%/d,}
v/adb,c, — y/a,d be ’
gﬁ

—c) «/a,da, d,
(d—c)\/ aba b, — (b—a) Veded,

\/ 0= (ab, od)

= (d—b)+/aca,c, —(c—a)y/bdb,d,
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57. In the foregoing formulee (be, ad) (ac, bd) and (ad, be) denote respectively

Lady, ay| , | L ety oy | , |1, a4y, oy |;
1, b4c, be 1, ¢c+a, ca 1, a+b, ab
1, a+d, ad 1, b4d, bd 1, ¢c+d, cd

and substituting for @,33,¢0, 3D their values, and for a, b, &c., writing again a—u,
b—x, &c., we have moreover

Aw=,/c—=bb—dc—d (a—x), A=/ N (@a—y),
Bu=,/¢c—a.c—d.a—d (h—a), Blv=,/" N (b—y),
Cu=,/a—ba—d.b—d (c—u), Co=,/ » (c—y),
Du=,/c—b.c—a.a—b (d—x), D=,/ ” (@d—y),

Au+v)=,/ ” (@—2),

B u+v)=y/ (b—2),

Cu+v)=,/ ” (c—2),

D uto)=/ " (d—2),

the constant multipliers being of course the same in the three columns respectively.
According to what precedes, the radical of the fourth line should be taken with the
sign —. The functions (be, ad), &c., contained in the formule reguire a transforma-
tion such as
(b—c) (be, ad)= | b—x.b—y, c—a.c—y
b—a.b—d, c—a.c—d

in order to make them separately homogeneous in the differences a—x, b—x, c—u,
d—x, and a—y, b—y, c—y, d—y, and therefore expressible as linear functions of
the squared functions A%, &c., and A%, &e., respectively : and the formulee then give
the quotient-functions A (u—+v)<+D(u-+v) &c., in terms of the quotient-functions of
u and v respectively.

Doubly infinite product-forms.

58. The functions Aw, Bu, Cu, Du may be expressed each as a doubly infinite
product. Writing for shortness
MDCCCLXXX. 6 D
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m 4+ = (m, n)
‘e N t)
m+1- 72.ﬁ=(77% )
™ A
m 1) E=0m, n
n m,_(m, n),
a — =
m—+14(n+ 1);@,_— (m, n),
then the formule are

Au=A0. IIII

Bu=B0. TOI1I

Cu=C0. TIII

(m n)

Du=D’0.4IIII

HaEah
! <mn>}‘
U al
[+

(m, w>}

where in all the formule m, n denote even integers having all values whatever, zero
included, from — o to 4o ; only in the formula for Du, the term for which m and
n are simultaneously =0, is to be omitted.

59. But a further definition in regard to the limits is required : first, we assume that
m has the corresponding positive and negative values, and similarly that » has corre-
sponding positive and negative values™ ; or say, in the four formulee respectively, we
consider m, n as extending

m from —p to p+2, n from —» to v+2,

) o T M l"+2; 3 92 UV oy VU,
) 39 T M s, M EEETIE) vV 5 V+2:
2 39 T, B IR -V ., U,

where p and v are each of them ultimately infinite. But, secondly, it is necessary
that u should be indefinitely larger than », or say that ultimatel ;:

60. In fact, transforming the g-series into products as in the ¢ Fundamenta Nova,’
and neglecting for the moment mere constant factors, we have

* This is more than is necessary; it would be enough if the ultimate values of m were —pu, p/, p and p'
being in a ratio of equality; and the like as regards n. But it is convenient that the numbers should be
absolutely equal.
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Au= (142g cos mu+¢*) (1424 cos mu+4°%) . .,
Bu= cos {mu (1424 cos mu+¢*) (1 +2¢* cos mu+¢°) . . ,
Cu= (1—2¢ cos mu—4¢°) (1 —24° cos mu-+¢°),

Du= sin §ru(1—2¢*cos mu+¢*)(1 —2q* cos mu+¢®),

. a C
and writing for a moment a=— and therefore ¢*+q% =i+~ =2 cos {na, &e.,

each of these expressions is readily converted into a singly infinite product of sines
or cosines
Au=TI. cos m(u-+tn=),

Bu=II. cos 3m(u-+na),
Cu=1L sin 3= (u+na),

Du=1I sin {7 (u-+na),

where n is written to denote n+1, and n has all positive or negative even values
(zero included) from — oo to oo, or more accurately from —w» to », if v is ultimately
infinite.

61. The sines and cosines are converted into infinite products by the ordinary
formulee, which neglecting constant factors may conveniently be written

sin ru=TI(u+m), cos Tru=TI(u+4m),
) 3

where m is written to denote m-1, and m has all positive or negative even values
(zero included) from —oo to 4, or more accurately from —u to w, if u be ultimately
infinite. But in applying these formulee to the case of a function such as sin ym(u-+nea),
it is assumed that the limiting values u,—p of m are indefinitely large in regard to
u-na ; and therefore, since n may approach to its limiting value +v, it is necessary

that u should be indefinitely large in comparison with », or that i: 0.

62. It is on account of this unsymmetry as to the limits /Kt: 0,"—: =w, that we have

1 as a quarter period, % only as a quarter-quasi-period of the single theta-functions.

The transformation q tor, log g log r=mu>.

63. In general, if we consider the ratio of two such infinite products where for the
first the limits are (4, +v), and for the second they are (+p’, £v'), and where for
convenience we take u>p’, v>7/, then the quotient, say [u, v]<+[p’, v | is = exp. (Mu?)
where

6D 2
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M= __l“”dmdn

81} mmny?
taken over the area included between the two rectangles. We have (m, n):m—l—%n,
™

=m-10n suppoese, where (a being negative) = -—-g , 18 positive : the integral is

j‘ f dmdn f dm 1/ 1 v
(m~+i0n)” T i0\mA-ion)_)

T P S—
Y] m m—iOy  m+ibp)
_1 —u9v

=0 %8 54 m—HBu

or finally between the proper limits the value is
2 16y w —iov’
z@{log <y,+ 10v > log <}L'+’£9v’>}’

where the logarithms are log (u—16v)= log v/ p*+1*—1 ta-n“l%}, &c., and the tan™!

’
denotes always an arc between the limits —im, +%7T- Hence if “=w , ”;:0, the
14 14

Qr Qrr?

value 1sz( 0t— 0t +Lmr+4mt) = 5=, Or r K=1— Hence finally

10
2
[p+v,=00 |+ [ +v,=0]=eXP<%%M2)-

64. We have a,=log ¢, negative ; hence taking » such that log ¢ log =% we have
a’=log r, also negative; and r, like ¢, is positive and less than 1. We consider the
theta-functions which depend on # in the same manner that the original functions did
on ¢, say these are

A(u” 7’) = (O ?") { ! +m+ /z,ﬂ } ?

B(u, r)=B (0, »)

m+n——

+
C(u, r)=C (0, 7) nn{l m%_}

14—

m—f—n“

D(u, 7)y=D’(0, r)uIlIl
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limits as before, and in particular szoo; it is at once seen that if in the original

functions, which I now call A(w, ¢), B(u, q), C(«, q), D(u, q), we write %0 for u, we

obtain the same infinite products which present themselves in the expressions of the
new functions A(u, ), &c., only with a different condition as to the limits ; we have
for instance

(ﬁ?

OH| 14— =TT/ 14——\ =am/1+——\,
m-+n—, n—m— n4m—.
e e ™

which, interchanging mi, n, and of course also u, v, is

=HH<1—|— “ )
m+na—.
T

with the condition L:::O instead of gzoo. Hence disregarding for the moment

constant factors, and observing that a is replaced by a’, we have
D(w, ¢)+D(§f—,} 9>=[,U«-1—V,=oo:|+[/w—t—v,=0]
=exp (l—v > =exp (}u’log ¢).

65. We have equations of this form for the four functions, but with a proper
constant multiplier in each equation : the equations, in fact, are

A, )={A(0, 7)+A(0, 9} exp (u*log A%, q),

)
)
)

B, n={B(, »+B0, 9)} B(% ¢
O, H={C(0, )+C(O, @} . c(%a).
D, H={D(0, ) +D(0, 3™ . D% q)

Tt is to be observed that = is the same function of £’ that ¢ is of k: this would at

once follow from JAcoBI’s equation log ¢g= —IIS, for then log ¢ log r=n? and therefore

7

log 7= —-Wllé <only we are not at liberty to use the relation in question log ¢= -—%),

and assuming it to be true we have
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p=20.9) 4, G0, 9) K= A0, 9)D'(0, )

A%0,q) " T A0, ) T B0, )0, g)
e A2(O 9) - B”(O 7") , K/ A(O, fr’)D’/(O, 7”)’
(0, 7) Ag(O 9) B(0, »C(0, r)
log o= K
¢ g q— —_— K’ ’

where if the identity of the two values of % or of the two values of & were proved
independently (as might doubtless be done), the required theorem (r the same function
of &' that ¢ is of k) would follow conversely: and thence the other equations of the
system.

66. We have in the ¢ Fundamenta Nova,” p. 75, the equation

H(ou, k) . . H(w, lc’)

AKK'

00, k) 7’6 8(0, i)

writing here K'u instead of w the equation becomes

Hgg({)’nk )k) /\/k exp < K >H(él(§0 uk]n)

or what is the same thing

D<(ﬂ g>
w?)_. [k D(u, 7)
—Cw_z 7 ©Xp (—2u? log q). a0, 1)

which can be readily identified with the foregoing equation between D<f—:§, q> and

D(u, r). But the real meaning of the transformation is best seen by means of the
double-product formulze.

THIRD PART.—THE DOUBLE THETA-FUNCTIONS.

Notations, de.

67. We have here 16 functions 3<fy‘§> (4, v) : this notation by characteristics, con-

taining each of them four numbers, is too cumbrous for ordinary use, and I therefore
replace it by the current-number notation, in which the characteristics are denoted by
the series of numbers 0, 1, 2, ... 15: we cannot in place of this introduce the single-
and-double-letter notation A, B, ... AB, &c., for there is not here any correspondence
of the two notations, nor is there anything in the definition of the functions which in
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anywise suggests the single-and-double-letter notation : this first presents itself in
connexion with the relations between the functions given by the product-theorem :
and as the product theorem is based upon the notation by characteristics, it is proper
to present the theorem in this notation, or in the equivalent current-number notation:
and then to show how by the relations thus obtained between the functions we are
led to the single-and-double-letter notation.

68. There are some other notations which may be referred to: and for showing the
correspondence between them I annex the following table :—

Tue double theta-functions.

. 1. 2. . 3. 4. 5. 6. 7. 8.
o:ii%z:%%z}i?s. n(’;l;’f:; Character. diiﬁ%e;%gt‘tr, GPBL. &OYPE‘Y ROSENHAIN. ?;i{:‘:;: KUMMER.

9, 900 BD P P, 9 9, | 12

1 (1)8 CE R Ry 52 4 8

2 8(1) - CD Q" Qs % ol 10

3 (1)% BE 8" Ss 3 2 6

. s A0 P P, ” ¢

* 5 | %8 Y iR’ Ry 12 3 16
: i AB Q Q " . 2

* 7 }(1) B ' 5 1B % 14
8 88 BC pr Py . 20 12 9

L (1)8 DE R R, ‘ 30 0 b

* 10 81 F Q" Q, 2 02 11
* . a A 8" 8, . " v
» o AD P P w , 1

* 5 19 D R R ; o 13
. w |9 1 iQ Q a ) 3

5 u AR S S , N 15
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69. These are the notations :—

1. By current-numbers. It may be remarked that the series was taken 0, 1,...15

instead of 1, 2, ... 16, in order that 0 might correspond to the characteristic 88,
2. By characteristics;

By single-and-double letters ;

GoPrL’s, in his paper above referred to, and

The same as used in my paper above referred to ;

RoseNHAIN’S, in his paper above referred to ;

7. WEIERSTRASY', as quoted by KONIGSBERGER in his paper “ Ueber die Trans-
formation der Abelschen Functionen erster Ordnung,” ¢ Crelle-Borchardt,” t. 64 (1865),
p. 17, and by BorcaARDT in his paper above referred to ;

8. Not a theta-notation, but the series of current numbers used in KuMMER’s
Memoir “ Ueber die algebraischen Strahlen-systeme,” ¢ Berl. Abh.” 1866, for the nodes
of his 16-nodal quartic surface, and connected with the double theta-functions in my
paper above referred to. :

But in the present memoir only the first three columns of the table need be
attended to. ‘

70. It will be convenient to introduce here some other remarks as to notation, &c.

The letter ¢ is used in connexion with the zero values =0, v=0 of the arguments,

S

viz, i—

S0 15 o g as Fg Fss S5 F10 S
are even functions, and the corresponding zero-functions are denoted by
Cps €1, Cgs Cgy Cyy Cgy Cgy Cgy Crgy Cyj5

there are thus 10 constants c.
When (u, v) are indefinitely small each of these functions is of course equal to its
zero-value plus a quadric term in (u, »), and we may write in general

S=c+L(c"”, ¢V, ¢ Yu, v)*;

there are thus 30 constants ¢/, ¢V, ¢".
The remaining functions

’95> ’977 910’ '911’ '913: '9143

are odd functions vanishing for u=0, v=0, and when these arguments are indefinitely
small we may write in general

Y=(c¢’, ¢"Yu, v)

there are thus 12 constants ¢/, ¢”.
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71. All these constants are in the first instance given as transcendental functions of
the parameters, or say rather of exp. a, exp. h, exp. b (which exponentials correspond
to the ¢ of the single theory): viz., in a notation which will be readily understood, the
constants ¢, ¢, ¢, ¢' of the even functions are

S exp <m—;a, n-l-B) :

)
— 4% (e, 2(m-2)(n+B), (1), exp ("7 “;“3>

3

and the constants ¢/, ¢” of the odd functions are

Lmis (m+a), (n4-B), exp <m::a’ M‘;B>

72. It is convenient for the verification of results and otherwise, to have the values
of the functions, belonging to small values of exp (—a), exp (—b); if to avoid
fractional exponents we regard these and exp (—h) as fourth powers, and write

exp (—a)=Q* exp (—h)=R*, exp (—b)=S8,
also
QR*S=A, QR"*S=A’, and therefore AN'=Q?2S?,

then attending only to the lowest powers of Q, S we find without difficulty

Jo(w)= 1, and therefore also ¢,=1,

9, = 2Qcos imu, 6, =2Q,

9, = 28 cos 3w, c,=28,

33 = 2A cos pm(u—+v)+2A" cos sm(u—v), cg=2A+24,
3, = 1, ‘ =1,

9, =—2Qsin i7u,

9 = 28 cos v, c;=28,

3,  =—=2A sin Fm(u+v)—2A" sin tmr(u—v),

58 = 1, cg=1,

9y = 2Qcos imy, cy=2Q,

9, =—28sin Lmv,

S =—2A sin Jw(u+v)+ 24" sin I (u—o),

I, = 1, cp=1,

Sy =—2Q sin mu,

9 =—28 sin m,

815 =—2A cos 3m(u4v)+2A’ cos dm(u—v), Crs=—2A+2A",

MDCCCLXXX., 6 E
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73. The expansions might be carried further ;- we have for instance

9o(1)=142Q* cos mu-+2S8* cos =, ¢ =14+2Q4428%
9, =1—2Q¢ , o8t , ¢, =1—2Q44-28%
9y =1+42Q* ,, —28* , , cg =142Q*—25%
Jp =1-2Q* ,, —28* | C1o=1—2Q%—28%
S = 2Qcos sru+2Q° cos Swu+2A cos dm(u+2v)+2A" cos tmw(u—2v),

¢, =2Q+2Q0+24 424,

Y5 = —2Q sin 7u42Q? sin S7ru—2A sin Lm(u+20) —2A" sin La(v—2v)
Y9 = 2Qcos fru+-2Q° cos Fru—2A cos Im(u-+2v)—2A" cos Lm(u—2v),
0y =2Q42Q0 —2A — 24,
3 = —2Q sin {ru+2Q° sin $ru+-2A sin La(u+20)+2A" sin Lo (u—20),
in which last formulse ;
2Q2 12Q2
A=QRSt, =A_QS_ s A=QR8%, ._:___A_Q_S_

74. In the single-and-double-letter notation we have six letters A, B, C, D, E, I';
‘and the duads AB, AC, ...DE are used as abbreviations for the double triads
ABF, CDE, &c., the letter F always accompanying the expressed duad ; there are
thus in all six single-letter symbols, and 10 double-letter symbols, in all 16 symbols,
corresponding to the double-theta functions, as already mentioned in the order

& 0 1 2 3 4 5 6 7 8 9 10 11 12 18 14 15

BD, CE, CD, BE, AC, C, AB, B, BC, DE, F, A, AD, D, E, AE

where observe that the single letters C, B, F, A, D, E correspond to the odd functions
5, 7, 10, 11, 13, 14 respectively.

75. The ground of the notation is as follows :—

The algebraical relations between the double theta-functions are such that intro-
ducing six constant quantities a, b, ¢, d, e, /' and two variable quantities (x, y) it is-
allowable to express the 16 functions as proportional to given functions of these quan-
tities (a, b, ¢, d, e, f; @, y); viz.: there are six functions the notations of which depend
on the single letters a, b, ¢, d, e, f respectively, and 10 functions the notations of
which depend on the pairs ab, ac, ad, ae, be, bd, be, cd, ce, de respectively: each of the
16 functions is in fact proportional to the product of two factors, viz.: a constant factor
depending only on (¢, b, ¢, d, ¢, f), and a variable factor containing also x and .
Attending in the first instance to the variable factors, and writing for shortness

o=, b—x, c—x, d—x, e—x, f—x=a, b, c,d, e, f ; x—y=10;

g

a""’?/:»b_y: =Y, d_y’ e'—y:.f'_?/za’p bp C,e d,, ©,1L;
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these are of the forms

Va=+/aa, v/ %:%{ vabfede,++/abfcde}

and I remark that to avoid ambiguity the squares of these expressions are throughout
written as (v/a)? and (v/ab)? respectively.

76. There is for the constant factors a like single-and-double-letter notation which
will be mentioned presently, but in the first instance I use for the even functions the
before mentioned 10 letters ¢, and for the odd ones six letters £, I assume that the
values x, y=o0, o (ratio not determined) correspond to the values u=0, v=0 of the
arguments; and that  is a function of (z, y) thh when (x, y) are inter changed changes

only its sign, and which for indefinitely. This

being so, we write (adding a second column which will be afterwards explalfnec)i)
90=BD=wOO V'bd, Cy =\bd,
1::0E=,,é1 \/(*—e, ¢ =,,\‘7(::2,
2=CD=,,62.\/CE, Cy =,,\/27¢?,
3=BE=,,c, v be, Cq =,,\4/(_)_E,
4=AC=,,¢0, v ac, Cy =,V ac,
b= C =,k \/5, ky =,,\4/c:,
6=AB=,,c, «/&Z, A =,,\4/a=5,
7= B =,k Vb, b, =,Vb,
8=BC=,,¢c, \/l;;, Cg =,,&*/Z§Z
9=DE=,,c, v de, Cy =,,\4/0—E,
10= F =,,k‘10\/__}7; kg =,,\4/f
= A =,kVa, by, =,Va,
12=AD=,,012\/0—1—0‘1, 012=,,¢/a:—cz,
13= D =,k;Vd, by =,V4d,
14= B =k, e, by =,V e,
15=AE=,,015\/&;, 015=,,{4/67—5,

(@9)?
-y’
and each of the functions /a, &c., becomes =,/xy ; hence by reason of the assumed
form of , the odd functions each vanish (their evanescent values being proportional
6 ®m 2

: here, on writing @, y=o0, o, each of the functions ,/bd, &ec. becomes =2-—
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to ks, Ky, Ky, Ky Krg, Kyy respectively), while the even functions become equal to ¢, ¢,
Cyy Css Cyp Cgs Cgy Cgy Cray C15 Tespectively.

Observe further that on interchanging w, 7, the even functions remain unaltered,
while the odd functions change their sign ; that is, the interchange of x, y corresponds
to the change u, v into —wu, —. :

77. As to the values of the 10 ¢’s and the six &'s in terms of (a, b, ¢, d, e, f) these

are proportional to fourth roots, v/ E_, &e., v 07(): &e.; in \4/5, a is in the first instance
regarded as standing for the pentad bedef, and then this is used to denote a product
of differences be.bd.be.lf.cd.ce.cf.de.df.ef ; similarly ab is in the first instance regarded
as standing for the double triad abficde, and then each of these triads is used to
denote a product of differences, ab.af.bf and cd.ce.de respectively. The order of the
letters is always the alphabetical one, viz.: the single letters and duads denote
pentads and double triads, thus :

a=bcdef, ab=abf.cde,
b=acdef, ac=acf.bde,
c=abdef, ad=adf.bce,
d=abcef, ae=aef.bed,
e=abcdf, be="bcf.ade,
f=abede, bd=>bdf.ace,
be=bef.acd,
cd=cdf.abe,
ce=cef.abd,
de=def.abe.

There is no fear of ambiguity in writing (and we accordingly write) the squares of
v'a and vab as va and v ab respectively ; the fourth powers are written («/ 07)2 and
(v/ab)?*; the double stroke of the radical symbol v isin every case perfectly dis-
tinctive.

This being so we have as above 00=M4/ Z——c?, &ec., k5=)\§1/§, &ec.: it is, however, im-
portant to notice that the fourth roots in question do not denote positive values, but
they are fourth roots each taken with its proper sign (4, —, 44, —1, as the case may
be) so as to satisfy the identical relations which exist between the sixteen constants ;
and it is not easy to determine the signs.

The @, y are connected with the u, v by the differential relations

ocdutrdv= —%{ j‘%_%} ,

wdu+pdv= ——%{ %}i%_yvd%}’
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where X=abcdef, Y=ab,c,def; which equations contain the constants =, p, o, 7, the

A e v
values of which will be afterwards connected with the other constants.
78. The ¢’s are expressed as functions of four quantities a, 8, y, 8, and connected
with each other, and with the constants (a, b, ¢, d, ¢, f) by the formulee

o .

c?

=02+ B4+ 8= woz\/i)?l,

1=2(aB8+yd) =, Ve,
2=2(ay+B39) =, \/@,
3=2(a8+ By) =, \/ﬁ,

i=— By —F= , Vuc,
6=2(ay—33) = ,, vV ab,
8=a’+ B —yP—8"= ,, Vbe,

9=2(aB—y3d) = ,, \/Je_,
12=a’— R —y*—&= ,, Vad,
15=2(ad—fy) =,, Vae.

It hence appears that we can form an arrangement

| ¢l €Y, % |+c% = a, b, ¢ a system of coefficients in the trans-
2 ? ? @ b formation between two sets of rec-
» ¥ 8 > tangular coordinates.
2 77 N7
Ay, —cPy —C% | a’, b”, ¢

We have between the squares of these coefficients of transformation 649 equations

that is | ¢ ¢ ot 4 =03
2 2 4 = 12 +1 +6 —0
a’ +0% ¢ =1, 9 +4 +3 —0
a? Fb2 42 =1, 2 415 +8 —0
o202 =1 12 +9 +2 —0
+ ’ 1 +4 +15 -0
C(/2 +a/2+a}//2=1’ 6 + 3 + 8 O
2 ) - 1 +6 —9 —2
b+ +U7=1, 6 +12 — 4 -—15
@ 4c¢?4c?=1, 12 +1 —3 — 8
. 77 17 /7 / 17 175 173 /3 45 + 3 - 2 ""12
B+4c?=a?+a"?, 024 P=a"4-a?, V?+c?=d+a® | 3 L9 _15 _1
02+a2=b/2+b//2’ C'2+a/2=b//2=b2’ c//2+a/12=bz+b/2’ 9 + 4! - 8 - 6
a2+[)2=02 +G”2, a/2+b/2=0//2___02’ Ob’/2+b/'2=02+0/2 5 +8 —12 — 9
' ’ 8 +2 —1 —4
2 415 —6 — 3
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and between the products a system of 649 equations

thatis | ¢ | & | & &|=0;
Y4 1777 7 ’7 — 9 2 + 4:‘ 15 _— 3 8
a'a’+b"+d ¢ =0, 212 |=15 1 — 8 6
o’a+0"b +c’c =0, 12 9= 1 41+6 3
aa’ 400" +cc’ =0 1 6|—4 3 +15 8
o+ ’ 612 |+ 3 9 —8 2
s g 1|l—9 4l-21
be ¢ +b7¢” =0, 12 5
7 NZw —012 |+ 4 8|+ 315
ca +oa +ea”=0, —0 1{+3 2/+8 9
ab +a’b’ +a"b"=0, =0 6|=915 +2 4
/v 77 7 /7 17 7 .7 r71.77 777 7 _O 9 —15 6 = ].
a, b, ¢ =bc"=b'¢, ca"—c"o, a'b"—a"l, +O4——812t22
a/, b/, c/ b//c _bcl/, C//Cl/ _Ca///, Cl/b” —a//b’ —"O 8 _12 15 - 1 2
a Y, b —Ve, o —ca, b —a'b —0 2|+ 1 3 +4 6
9 ¢ ’ g ’ 4015 |+ 6 9|— 312
+0 8|—12 4|—9 1

each of the first set of 15 giving a homogeneous linear relation between four terms ¢*;
and each of the second set giving a homogeneous linear relation between three terms
% ¢, formed with the 10 constants ¢. Thus the first equation is ¢+ ¢ *4cgt—c*=0 ;
and so for the other lines of the two diagrams. '

79. I form in the two notations the following tables:—

TABLE of the 16 KuMmMmER hexads.

A | A A A A | B B B B C C C | D D E A
B C D E F C D B I D | E F B F F B
AB | AC | AD | AE | AB |BC |BD |BE | AB|CD | CE | AC | DE | AD | AE | C
CD | BD | BC | BC | AC | AD | AC |AC |BC | AB | AB|BC [ AB|BD |BE | D
CE | BE | BE | BD | AD| AE | AE | AD | BD | AE | AD |CD | AC |CD | CE | E
DE |DE |CE |CD | AE |DE |CE |CD | BE |BE | BD|CE |BC | DE |DE| F
=|11 |11 |11 11 |11 7 7 7 7 5 5 5 |13 |13 |14 |11
7 5 |13 |14 |10 5 |13 |14 |10 |13 |14 (10 |14 |10 |10 7
6 4 |14 |12 6 8 0 3 6 2 1 4 9 |12 |15 5
2 0 8 8 4 |12 4 4 8 6 6 8 6 0 3 |13
1 3 3 3 |12 |15 [15 |12 0 |15 |12 2 4 2 1 |14
9 9 1 2 |15 9 1 2 3 3 0 1 8 9 9 |10
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6°¢T 671 9q 71 9'€1 9%I €VL Vel 4! oI71 STVl 8'€1 871 0%L GVl
Ts (4 ¥4 G'€EL el T4 0€1 or'¢ are ST'€T |- 8T'SI 09 €q g€l T€T
€4 - 8'TL 8'4 0TI €Tl 8 ¢TI TTI 6'TT v'a G4 T4 6 6°G
ST'TI oT'll 60T 71t €01 G601 911 §01 001 80T 94 STOT Gl'01 40N 90T
881 86T TS 0°ST 6% 6T (B 60 6'€ 1€ G'E 6'GT 6T ST €61
0¥ €¥ €0 g€l g8 08 T3l 18 ¢'8 60 10 TV (4 6ol 031
69 T9 qTel 69 Ty % 67 419 el'9 79 6'8 €9 09 89 8F
0T%1 OT'€T (454! 0T’ 489 1Y oTs VT4 814 G OT'TI YT'TL E€T'TI a1I 4T
HA'd | H@'E | VO HOoWH | gva ! dVH | H9H | OVA | OVH | AVH | HVH | 0d'd | D9H | d9H | dD'H
d00 ano | Ovd | ddo'd | avd | 4vd | d9d | AVO | HVD | HVA | AVA | gD | @94 | 49d | A0'A
Hg'd | ag'9d | o4V | 0od4d | A4V | HE'V | €D adyv | HOV | HA’V | OVD | dp'd | HDO'd | @4d'd | 4D
HV'YV | AVY | Hd'L OVY | HD'E agd | g9vyvy | Hd'd | dd'd | 0dd | g§vdE | gavVd | avd | OVd | dvd
09°'aAv | 09dv | @O0 | Ad'dV | HA'AD | HA'HO | dD'UYV | HA'dY | HA'HYE | HO'HY | dD'HE | HA'AV | HAHV | HO'HYV | HAHY
aqgov | g0V | Hd'dd | H4°'AV | HF'09d | A9'Dd | HO0°'AV | D09 | dD'04 | dD'dd | HD'A9 | HO'OV | DOV | AD'AV | ad av
aodv | 4odv | av-ayv | Hadv | HVOV | AVOV | HA'DV | HV'EV | AvdV | DVIV | HA'Dd | HE'dV | dd'dV | 09'dV | 090V
LRCH d°a Hda d90 "D an a£dq Hd adq g a4V HY av oV av

sared QBT oY) Jo IV, ‘08
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81. TABLE of the 60 GOPEL tetrads.

A.B.AE .BE C.D.CE .DE E.¥.AB.CD AC .BD.AD.BC
A.B.AD.BD C.E.CD.DE D.F.AB.CE AC .BE.AE . BC
A.B.AC.BC C.F.AB.DE D.E.CD.CE AD.BE.AE.BD
A.C.AE .CE ] B.D.BE .DE E.F.AC.BD AB.CD.AD.BC
A.C.AD.CD B.E.BD.DE D.¥F.AC.BE AB.CE .AE .BC
A.C.AB.BC B.¥.AC.DE D.E.BD.BE AD.CE .AE .CD
A.D.AE .DE B.C.BE .CE E.F.AD.BC AB.CD.AC.BD
A.D.AC.CD B.E.BC .CE C.F.AD.BE AB.DE.AE.BD
A.D.AB.BD B.F.AD .CE C.E.CD.DE AC .DE.AE .CD
A.E.AD.DE B.C.BD.CD D.F.AE.BC AB.CE .AC .BE
A.E.AC.CE B.D.BC.CD C.F.AE.BD AB.DE.AD .BE
A.E.AB.BE B.F.AE.CD C.D.BC .BD AC .DE.AD.CE
A.F .BC.DE B.C.AB.AC D.E.AD.AE BD.CE .BE .CD
A.F.BD.CE B.D.AB.AD C.E.AC.AE BC .DE.BE .CD
A.F.BE.CD B.E.AB.AE C.D.AC.AD BC .DE.BD.CE
= 11 7 15 3 5 13 1 9 14 10 6 2 4 0 12 8
11 7 12 0 5 14 2 9 13 10 6 1 4 3 15 8
11 7 4 8 5 10 6 9 13 14 2 1 12 3 15 0
11 5 15 1 7 13 3 9 14 10 4 O 6 2 12 8
11 5 12 2 7 14 0 9 13 10 4 3 6 1 15 8
11 5 6 8 7 10 4 9 13 14 0 3 12 1 15 2
11 13 15 9 7 5 3 1 14 10 12 8 6 2 4 0
11 13 4 2 7 14 8 1 5 10 12 3 6 9 15 0
11 13 6 0 7 10 12 1 5 14 2 9 4 9 15 2
11 14 12 9 7 5 0 2 13 10 15 8 6 1 4 3
11 14 4 1 7 13 8 2 5 10 15 O 6 9 12 3
11 14 6 3 7 10 15 2 5 13 8 0 4 9 12 1
11 10 8 9 7 5 6 4 13 14 12 15 0o 1 3 2
11 10 0 1 7 13 6 12 5 14 4 15 8 9 3 2
11 10 3 2 7 14 6 15 5 13 4 12 8 9 0 1

The product-theorem, and its results.

82. The product-theorem was

% n of %8 / 3at+e)+p,3(B+B)+ $(a—a)+p3B—B)+q,, .
9<y,§>(u+u).9<v,’§,>(u—u)—_—z® (~/+v’) P (§+§) Y(2u).® (W_A}) P (8_5) L(ow)

where only one argument is exhibited, viz. : w4/, u—w/, 2u, 2u” are written in place
of (u+v/, v+v), (u—w', v—v'), (2u, 2v), (2, 2v') respectively. The expression on
the right hand side is always a sum of four terms, corresponding to the values (0, 0),
(1, 0), (0, 1), and (1, 1) of (p, g). For the development of the results it was found
convenient to use the following auxiliary diagram.
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UppEer half of characteristic.

1+(d—9)%

P I R I A I e I I N B e SR ey o
H+A>s|3vm — e eln | N e — oo e el | e e
HlTleTQV%. — - s ol — - o o oa oo © O sla g O O
H+A\8+8v% — oo - o aa O on O — olN - e g O an O
H+A\Q|Qv% — o e e | o o ol oels | o e - = | e e~
A\xlsvw S HND AN | o O B O | D H D HY | el O wn O
‘H+A\Q+Qvlm. — = ol e — - ol e o o O O oa o © O '
(» +8vm O HAN D M | AN AN | O e D A | O e
(=i | o © Harda | © © dada | daelt © O | ol O O
ﬁ._-bﬁl.sv.m. L R B I I I R e R O
A\@FTM\V% O O HHN | © © Hov e | o AN — o~y = =
H+A~§+8um~ —_ e o | AN D Hn O | o e | e O e O
(J—gH)e | © © Hurn | © © dada | dn ala © O | @l ol D O
(7—2)8 | © MO da | WO O | O HNO S| e O el O
A\m._.mé% O O HIAN | © O Mo AN | A S = [ e Ao~
bs._.sv% O AN O AN | Ao Al — O HN O Ao | Ao~ N
\QWOOOO SO OO | HHMH™M | oo
1
‘sW,OOOO HHAH—H || OO0 OO | mM™mrm m—
d SO HH | OO HM | OO0 HdH | © O -
© OCHOH | OHOMH | OHOH | OO -

Lowegr half of characteristic.

—1

-1

—1

—1

10

11

2

1 2

0

-1

—1

—1
—1

-1

0
—1

0

10

11

0

1

2 1

0

—1

1

—1

-1

0

-1
-1

-1

00 2

-1

10

01

0

1

2

0

0

0

—1

0

0
—1

—1

0

0

—1

—1

010 2

—1

0

0

1

1

1 0

11

01
1

1

0 2
1

2

11
2 1
1 2
2 2

1

1

0 0]0 00 O
1 00 01 0

0110 0}j0 1

1 10 0

0 011 0

1 011 02 0

0 1]1 0

1 1|11 0121

0 0(0 1

1 0/0 1
0 1(01
1 1101

001 1

1 011 1

01|11

1

MDCCCLXXX,
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83. The upper characters of the @’s have thus the values 0, 1, &, £; the lower
characters are originally 2, 1, 0, or —1, and these have when necessary to be by the

addition or subtraction of 2 reduced to 0 or 1; the effect of this change is either to
leave the ® unaltered, or to multiply it by —1 or 4, as follows

0 0
Oy+2 v’
1
v

Il
@
@
<L
+
Do
I
.
@
o
[\
Il
1
@

Il
I
@
@
<L
+
DO

[
%.
-~ e
@
L
+
DO

|
Y
@

Oy 49

where only the first column of characters is shown, but the same rule applies to the

second column ; and where we must of course combine the multipliers corresponding to
the first and second columns respectively : for instance

ER - 31

Oy +2 §+2=(—1.—1=)—0y §

Thus taking the tenth line of the upper half, and the fifth line of the lower half, we
have

TN T S 22 O A 2 A 2 2 I B 2 0 -
00 | 10 | 1 0—1 0 1 0—1 0 | 1 0—1 0 | 1 0—1 0
. 10 A 01 N e
giving the value of 3 O(u+u ).,9] , O(u—u ): viz. this is
— o' tay.e Pian= et tou).ef ew)
= P oV T o\ T 10V %10
+01 0(»)©_1 o(») 101 ()01 50

where the first column is the value given directly by the diagram, and which is then

reduced to that given by the second column.
84. But instead of the ®'s we introduce single letters (X, Y, Z, W), (E, F, G, H),

1,7, K, L), (M, N, P, Q), with the suffixes (0, 1, 2, 8), in all 64 symbols, thus
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: _ 0
®00 10 0L 11 (2u)= X Y Z W . .. 6 0(2u)=X, @10=Y, &e.
00 0 00 00

10 1 00 _

o ) 0,,(2u)=X, ..

11 3 :

A L 1 3 3 —_— R . 1

30 31 50 31 (2u) = EF G H that is 20(226)=E, &e.

10 1

01 2

11 3

® 0} 11 0% 12 (2u) = I J K 1. Thefunctions of (2u) are denoted in like
00 0 iw“‘—‘,’“* manner by accented letters

10 1 00 6, A —x"

L0 2! oy (20)=X', &e.

11 3

4 8 4% 3 @w= M N P Q

00 0

10 1

01 2}

11| 3

85. To simplify the expression of the results, instead of in each case writing down
the suffixes, I have indicated them by means of the column headed ¢ Suff.”
Thus '
01 00 Sut
| 8—0 | 801u+u’.900u—u’=XX’ +YY' +Z7Z +WW' | 2|

means that the equation is to be read
= XQXQ/ + Y2Y2/ + Z2Z2, + WQWQI.

It is hardly necessary to mention that the | 8—0 | of the left hand column shows
the current numbers of the theta-functions; viz.: the left hand side of the equation is
(1) . So(u—2n).

And by a preceding remark the single arguments w-u" and w—u' are written in
place of (u+u', v+7') and (u—u’, v—12) respectively.

6 F 2
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The 256 equations now are

86. Firsr set, 64 equations.

o Suffixes
0—0 900 utu' . 890 u—u’ XX +YY +Z%Z +WW 0
40 90 00 XX +YY +Z7Z +WW 1
8—0 00 o0 XX +YY +Z% +WW 2

12—0 3 o XX +YY +Z7Z +WW 3
0—4 900 utu . 90 u—w XX —YY +Z7Z —-WW 1
-4 N o XX —YY +4Z7Z —WW 0
8—4 O a0 XX —YY +Z% —-WW 3

12—4 9 " XX —-YY +%%Z ~WW 2
0—8 300 utu'. 90 u—u XX +YY —%Z7Z —-WW 2
4—8 90 00 XX +YY —ZZ —-WW 3
g—8 0 00 XX +YY —ZZ —-WW 0

12-8 o) XX +YY —ZZ —-WW 1
0—12 990w, 990 u—w XX —YY —ZZ +WW 3
4—12 90 00 XX —YY —Z7Z +WW 2
g-12 O o XX —YY —-Z7%Z +WW 1

12-12 % 90 XX —YY —47%Z +WW 0




AND DOUBLE THETA-FUNCTIONS.

F1rsT set, 64 equations (continued).

Suffixes.
1-1 90 udn S0u—v/ = YX +XY +WZ +ZW 0
-1 L = YX +XY +WZ%Z +ZW 1
9-1 o = YX +XY +WZ +ZW 2
13-1 o = YX +XY +WZ +ZW 3
1-5  Sp0utw $0u—w = YX XY +WZ -z W 1
5-5 10 . =—YX +XY -WZ +ZW 0
9-5 19 » = YX —-XY +WZ%Z —ZW 3
13-5 19 10 =YX XY -WZ +5W 2
1-9 S0 utu 9 u—u = YX +XY —WZ -ZW 2
5—9 10 o = YX +XY —-WZ —ZW 3
9-9 o o = YX +XY —-WZ -Z2W 0
13-9 1Y a0 = YX 4+XY —-WZ —ZW 1
1-18 90wt . Hu—w = YX XY —Wz +2W 3
5-13 1 1 =YX +XY +WZ —-ZW 2
9—13 10 19 = YX —XY —-WZ +ZW 1
13-13 1Y 1 =YX 4+XY 4+WZ —ZW 0

949
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F1rst set, 64 equations (continued).

Suffixes,
9—2  Ssutu . $bu—w = LZX WY +XZ +YW 0
6~2 0 o = ZX +WY +X7%Z +YW 1
-2 O o = ZX +WY +XZ +YW 2
-2 ] o = ZX +WY +X7Z +YW 3
8—6 IS utw . pu—u = ZX —-WY +X7Z -YW 1
6—6 ¢ a = ZX —-WY +X7% —YW 0
10-6 O a = ZX —-WY +X%Z —-YW 3
u—6 9 o = ZX WY +X%Z -YW 2
2—10 S utw . Su—w = ZX WY -X7Z YW 2
6—10 91 o = ZX 4WY -XZ YW 3
10-10 O o ——ZX WY +X% +YW 0
u—10 91 o = 7ZX —-WY +X%Z +YW 1
o—14 9 utw . Nlu—w = ZX WY -X7Z +YW 3
6—14 91 o = Z4X —WY —XZ +YW 2
10-14 O o ——ZX +WY +XZ%Z —YW 1
u-14 a ——ZX +WY +X7%Z —-YW 0




AND DOUBLE THETA-FUNCTIONS.

FirsT set, 64 equations (concluded).

| Suffixes.
3-8 900 utu . 955 u—v WX +ZY +YZ +XW 0
-3 1o o WX +2Y +YZ +XW 1
11-3 o o WX +2Y +YZ +XW 2
-3 1 o WX +ZY +YZ +XW 3
B—7 S utu . Igu—u WX —ZY +YZ —-XW 1
- 1 i WX +ZY —YZ +XW 0
n-r n WX —ZY +YZ% —XW 3
-7 1 i WX 4+ZY —-YZ +XW 2
8—11  9hbutu . 9% u—v WX 4+2Y -YZ —XW 2
-1 1} a WX +7ZY —-YZ —XW 3
-1 g o WX —ZY +YZ +XW 0
15-11 1 0 WX —ZY +YZ +XW 1
8—15 95t utu . T u—u WX —ZY —-YZ +XW 3
-1 15 1 WX +ZY +YZ —-XW 2
11-15 1 WX 4ZY +YZ —XW 1
15-15 11 i WX —ZY -YZ +XW 0
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87. SECOND set,

64 equations.

Suffixes.
1-0 90 utu . 900 u—w BE +GO +FF +HH 0
5-0 10 o EE +GG +FF +HI 1
9-0 o o BE +GG¢ +FF +HH 2
13-0 10 o BE 4+ GG +FF + HH 3
14 S0 utu 90w =—BE 4iG ¢ —FF +iHH 1
5—4 10 o EE —iG G +iFF —iHH 0
o—4 ) o _BW 466 —FF 4H 3
18—4 10 o BE —iG @ +FF —iHH 2
1-8 800 uta . 900 u—/ EE +GG& —¥F —HE 2
5—8 10 00 EN +GG@ —FF —HE 3
9-8 o 5 EF +GG —FF —HH 0
13-8 15 o0 EE +GG —FF —HH 1
1-12 840 uto S u—u/ =—iBE +iG G +iF P —HH 3
s-12 19 00 B —iG G —FF +HH 2
9—12 ¢} 90 —BT +iG G +FF —HE 1
13-12 10 00 B —iG @ —FF +iHH 0




AND DOUBLE THETA-FUNCTIONS.

SECOND set, 64 equations (continued).

Suffixes.
0-1  S0utu. $0u—u = BG +GE +FH +HF 0
-1 % o = BEG +GE +FH +H 1
81 (o w = EG +GE +FH +HW 2
12-1 Y o = EG¢ +GE +FH +HF 3
0—5 90 utw . H)u—w = BE —iGE P —H T 1
4—s5 9 I = BGE —iGE +PFH —iHF 0
g—5 o0 1 = BG@ —iGE +FH —HF 3
12—5 (Y | 1 = BG —iGE +iFH —HF 2
0—9  Soutu . Hlu—w = BE +GE —FH —HF 2
-9 9 o = EG +GI —FH —HF 3
g—9 o0 o - EG +GE —FH —HF 0
12-9 9 o = EG +GE —FH —HF 1
0—13 900 utu . 9 u—u = EG —iGE —iFH +HT 3
4—13 9 19 = BG —iGE —FH +HF 2
g-13 ¢ 1 = BG —iGE —iFH +iHF 1
12-13 9 19 = EG —iGE —FH +HF 0
MDCCCLXXX., 6 G
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SECOND set, 64 equations (continued).

Suffixes.
3—2  ollutw. 9lu—u = FW +HG +EF +GH 0
-2 11 o = FW +HG +EF +GH 1
-2 4 o = FE +HG +BF +GH 2
-2 1 o = ¥E +HG +EF +GH 3
8—6  9ggutd Agu—v =—FE +iHG —BF +iGH 1
—6 1 o = PR —HG +iBF —iGH 0
-6 o e W EG BT 4G 3
15-6 11 % = P —HG 4B —iGH 2
8-10 9futw . $ju—w = FW +HGE —BF —GH 2
7—10 15 o = TR +HG —EF —GH 3
1-10 gl o =—FE —HG +BF +GH 0
15-10 11 o = FW —HG +EF +GH 1
8—14 9 ut S u—w =—FE +iHE +BF —iGH 3
-4 1 " = FE —iHG —EF +iGH 2
1-14 o = FE —HG —EBF +iGH 1
15-14 17 o =—FE +HGE +iEF —iGH 0




AND DOUBLE THETA-FUNCTIONS.

SECOND set, 64 equations (concluded).

Suffixes.
01 ’ 11 [ A ’ ’ ' i
o3 0, 4w sy v = VY@ +HE +EH +GF 0
00 00
01 11 _ . , - ,
6-3 0 o = PG +HE +EH +GF 1
01 11 _ , : , , :
10-3 0 o = FG@ +HE +EH +GF 2
01 11 _ , , : ,
14-3 91 o = FG +HE +BH +GF 3
01 ] 11 [— . ' . ' . ' . Nl
2—-7 s utuw 3 u—uw = FGEF —HE +EH —GF 1
00 10
6—7 ‘1)(1} %(1) = FG —HE +EBH —iGF 0
10—7 8} %(1) = FQ@ —HE +EHT —iG ¥ 3
14—7 (1)} %(1, = FQ —HE +EH —iGF 2
or ., a1, , , ,
o011 Sy . dlu—w = FG +HE —BEH —GF 2
SR 01
01 11 _ , , .
6-11 5 o1 = F@ +HE —FEH —GF 3
01 11 —_— ! 1 ’ 1
10-11 0 =—FG@ —HE +BH +GF 0
01 ].1 —_ ] ' 1 ’
1—11 9 u =— FPG@ —HE +EH +GF 1
01 v oAl e
2—15 ‘900 w+u' . 311 w—u = FGF —HE —EH +:GF 3
6—15 (1% ﬂ = PG —HE —EH +iQWF 2
10—15 8% ﬁ =—iF ¢ +HE +EH —iGF 1
14—15 ﬂ ﬁ = F @ +iHE +EHT —iGF 0

6 G
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88. THIRD set, 64 equations.

Suffixes.
20  S0butu . 00 u—u = IT 4 IF $KK +LL 0
6—0 0 % = II +4+JJ +KK +LL 1
10-0 o1 o = IT +JJ +KK +LL 2
1u—o 9 i —= IT +JJ 4+KK +LL 3
24 9wy 90w = IT ~JF +KK —LI 1
6—4 01 | o = II' —J) +KK —LI/ 0
10—4 8{ o =~ 1T —JJ 4+KK —LL 3
-4 91 o = IT —JJ 4+KK —TLL 2
2-8 '38(1) whu 90w =il T —il J KK LT 2
6—8 91 0 =—ilT —iJ§ KK LI 3
-8 O o = AT +iJJ KK —LL 0
14—8 ol o = T 4dF —iKK —LT/ 1
2-12 0 utw 9N u—uw =T 4T T KK —iL L 3
6-12 % 09 =—iIT +JJ +EKK —iLL 2
10-12 O 00 = (AT —iJJ —KK LT 1
14—12 U1 00 = T —iJJ —KEK 4+iLL 0

11 11




AND DOUBLE THETA-FUNCTIONS.

THIRD set, 64 equations (continued).

Suffixes.
31 9wt $0u—u = JI +1J + LK +KIL 0
-1 13 o = JI' +1J +LK 4+KUIL 1
-1 gl o = JI' +1J +LK +KUI 2
-1 o = JT +1J +LK +KU 3
3-5  Sgputu.du—v = JT —1J +LK —KL 1
-5 1 19 =~ JTI +1J —LK +KU 0
-5 i 1 = JI —1J +LK —KU 3
-5 1 =—JI' 4+1J —LK +KU 2
8—9 S5t utw . 9 u—w =—iJI —ilJ LK KL 9
-9 11 o =il I i) LR KL 3
-9 o b = JT 4iiJ —LK —iKL 0
15—9 1 o = JT +4i1J =LK —KL 1
8—13  Sobutu . 9 u—u =—iJ T 4T LK —~iKL 3
-1 1p 10 = JT —1F —LK +iKL 2
11-13 07 19 = T ~ilJ —iLK +KL 1
15-13 11 19 ~—iJT 4i1J +iLK —iKL 0
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THIRD set, 64 equations (continued).

Suffixes.
0—2 900wt 900 u—u IK +JI +KI +LJ 0
00 01 , , , :
4—2 U0 o IK +JL +KT +LJ 1
00 o1 , , : , ‘
g—2 o i IK +JI +KT +1LJ 9
00 01 . , , ,

12—2 o IK +JI +KT 417 3

0—6 388 wt 3% w—t IK —JL +KI —LJ 1
00 01 1 ! ] !

4—6 90 o IK —JL +KI —LJ 0
00 01 , , , ,

8—6 o n IK —JL +RT —LJ 3
00 01 , , , ,

12—6 0 IK —JL +KT —1LJ 2
0—10 388 et 98} - AK 4L —iKT —iLJ 2
4—10 ?g 8} K +i0 1 —iKT —LJ 3
8—10 8({ 8} AR 4iJ I —iRT —iLJ 0

12—10 (3(1) 8} K +id I/ —KT —iLJ 1
0—14 388 wt s&’i I K —iJ I —iKT +4iLJ 3
4—14 ({8 g’} K —J T —iKT +ilJ 2
g—14 O ‘])} K —iJ I —iKT +iLJ 0

12—14 8‘{ 1)} AK —iJL —iKT 4ilJ 1




AND DOUBLE THETA-FUNCTIONS.

THIRD set, 64 equations (concluded).

Suffixes.
1-3  90usw. 9llu—w = JK +IL +LT +KJ 0
5-3 10 o = JK +4+IL +LI +KUJ 1
9-3 & = JK +1IL +LI +KJ 2
13-3 & = JK +IL +LI +KJ 3
1-7 930wt 9] v = JK —TL +LT —KJ 1
s—7 10 n =—JK +TL —LT +KJ 0
9—7 5 = JK —IL +LI —KJ 3
137 1Y I =—JK 4+1IL —LI +KJ g
1-11 980 utw. 9t u—w = WK 4L LT —KJ 2
5—11 10 ol = K 4L —LT —KJ 3
9-11 o7 o = K 4L —iLT —iKJ 0
-1 1Y o = JK 4l —LT —KJ 1
1-15 900 utu Ju—v = FK —dL —LT +iKJ 3
5—15 10 I =—iJK +dL +iLlT —KJ 2
9-15 o0 i = JK —ill/ —iLT +iKJ 1
13-15 19 u =—iJ K +idL +iLT —EKJ 0
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89. FourtH set, 64 equations.

Suffixes.
11, 00, , : , ,
3—0 oo vt g w—w = MM+ NN +PP +QQ 0
11 00 o : , ,
-0 15 o0 = MM +NN +PP +QQ 1
11 00 _ , : , ,
-0 g 0 = MM+ NN +PP +QQ 2
_1.1 OO — 1 ' 1 U ! <
15-0 11 o — MM+ NN +PP +QQ 3
11 , 00 . . T S B P A
3—4 300 utu', 310 w—u =—tMM +iINN —PP +:QQ 1
1 R
-4 1, gg =4+ M M —iNN' +PP —iQQ 0
11 0 A LN N DD s .
-4 & u — MM +iNN PP +iQQ 3
-4 11 o —4iMM —NN +iPP —iQQ 2
1] i 00 [ - , - ' - ! . '
3—8 900 utu' . 901 w—u =—iMM —i NN 4+PP +4QQ 2
1 AT ' . ' - 1 g ' ¢
-8 b 00 = MM —iNN +iPP +iQQ 3
n-s o0 = MM +iNN —iPP —iQQ 0
15-8 11 o) = MM +iNN —PP —iQQ 1
11, ., 00 N . ,
3—12 SOOu—i-u.Sllu——u =— MM+ NN + PP —QQ 3
. 11 00 _ : , , , .
7—12 14 N =+ MM —NN —PP + Q 2
11—12 4 o =+ MM —NN —PP +QQ 1
01 1 =
11 00 _ . : D ooy
15-12 ] 9 =—MM + NN + PP —QQ 0




AND DOUBLE THETA-FUNCTIONS. 961

FourrH set, 64 equations (continued).

Suffixes.
9—1 90wt 90u—u = MN £ NM +PQ + QP 0
6—1 0 o = MN +NM +PQ + QP 1
-1 o w0 = MN +NM +PQ +QF 2
u-1 9 o = MN +NM +PQ + QP 3
9—5  S0butu . Hou—w = MN —iNM +iPQ —iQP 1
6—5 1 = MN —iNM 4P Q —iQP 0
10-5 0 i = MN —NM +iPQ —iQP 3
u—s5 9 N = MN —iNM 4+PQ —iQP 2
9-9 S0t utuw . 9 u—u =—iMN —iN M P Q +iQ P 2
6—9 1t o = MN —iNM +iPQ +iQP 3
10-9 9 o = IMN 4+iNM —iPQ —iQP 0
-9 o = MN +iNM —iPQ —iQP 1
9-13 900 utw . 9Ju—u = MN —NM —PQ +QP 3
6—13 I 10 = MN —NM —PQ +QFP 2
10-13 O 3 =— MN +NM +PQ — QP 1
u-13 o =— MN +NM +PQ —QFP 0

MDCCCLXXX, 6 H
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FourtH set, 64 equations (continued).

Suffixes,
1-2 900 utw . SGu—v = MP +NQ +PM +QN 0
5-2 10 o = MP +NQ +PM + QN 1
9—2 o = MP +NQ +PM + QN 2
13-2 o = MP +NQ +PM + QN 3
1—6 90 utu . 9N u—v =—iM P +iNQ —iPM +iQN 1
5—6 10 O = MP —iNQ +PM —iQN 0
9—6 o o =—iM P +iNQ —iPM +iQN 3
1B8—6 19 " = MP —iNQ +iPM —iQN 2
1-10 900 utw 90 umw = IMP 4iNQ —iP M —iQ N 2
5-10 19 o = IMP +iNQ —PM —iQN 3
9-10 o o = MP 4+iNQ —iPM —iQ N 0
13-10 1) o = MP +iNQ —iPM —iQN 1
1-14 90 utu T u—u = MP —NQ —PM +QN 3
5—14 19 o =—MP +NQ +PM —QN 2
0_14 L o = MP —NQ —PM + QN 1
13-14 10 o ——MP +NQ +PM —QN 0




AND DOUBLE THETA.FUNCTIONS.

Fourta set, 64 equations (concluded).

Suffixes,
0 ., a1, : : : ,
0—3  Sgoutu . Sppu—u = MQ +NP +PN +QM 0
00 11 _ : , , ,
4-3 9 o = MQ +NP +PN +QM 1
00 11 _ , , , ,
8-3 O & = MQ +NP +PN +QM 2
OO 11 — 1 sl h ! 1 2l
12-3 99 o5 = MQ +NP +PN +QM 3
00 » oll ) . b D D . )
0—7 Sin utw 3 u—u = MQ —INP +iPN —iQM 1
00 10
a7 B n = MQ —iNDP 4PN —iQM ‘0
00 11 I
8—7 01 10 = MQ —iINP +/PN —QM 3
00 11 O N D PN O
127 11 10 = MQ —NP 4PN —iQM 2
OO 1 11 ! — K ! - 1 > 1 Y ! [9
0—11 3 w+v .37 u—u = MQ +iINP —PN —QM 2
00 01
-1 %N a = MQ +iNP —PN —iQM 3
g—11 O n = MQ +iNP —PN —iQM 0
1211 %9 o = MQ +NP —PN —iQM 1
0 , ., Ji , , , ,
0—15 SOOu-}-u ..911 u—u =—MQ + NP 4+ PN —QM 3
00 11 — ' ! ' '
4—15 9 1 ——MQ +NP +PN —QM 2
00 11 — [ ’ ' [
8—15 0y 11 =—MQ +NP +PN —QM 1
12-15 0% u =—MQ +NP +PN — QM 0

6 Hu
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90. I re-arrange these in sets of 16 equations, the equations of the first or square-
set of 16 being taken as they stand, but those of the other sets being combined in
pairs by addition and subtraction as will be seen.

written down, the first equation is

ON THE SINGLE

So(uu). I (v—v)=XX'+YY'+ZZ 4+ WW’:

in the second set, the first equation is

L9 (utu). 9 (w—u)+ Iy (u+u) 9 (v—u)} =X X+ Z,Z/,

and so in other cases.

FIrst or square-set of 16.

wt w=/ (Sufﬁxes 0.)

0 0 = X +Y Y 4% % +WW
4 4 = XX -YY +Z Z -WW
8 8 = XX 4YY -4 Z -WW
12 12 = XX =YY %47 +WW

NN <
i
+
>
~

e

9 X +X
13 1 —

2 2 =

6 6 =

10 10 =

14 14 =

3 3 =

7 7 =-—WX +7Z Y
11 11 =

15 15 =

+WZ +7Z W

X +XY —-WZ +4+7Z W
v X Y —-WZ —-7Z W
X +XY 4+W7zZ -7 W
X +WY +X 7 +Y W
X WY +X 72 —-Y W

—Z X —-WY +X 7 +Y W
-7 X +WY +X 7 —-Y W

WX +Z Y +Y % +X W

—-Y 7' +X W'

—-WX —-Z Y 4+Y Z 4+X W’
WX —-ZY -YZ +X W

91. SrEcoND set of 16.

u+u U=’ w4 =

94 0% + % . %} (Suffixes 1.)

4 0 0 4
12 8 3 12

5 1 1 5
13 9 9 13

6 2 2 6
14 10 10 14

7 3 3 7
15 11 11 15
w4’ w—u! w4 o'

TR

4 4

12 12

e
=~
ok

—
—
L

—
W
WO OHOD |

G
T
o
—

= XX +7Z 7Z
X X =74

Y X' +wWZ

Y X —wZ

Z X +X 7
—74 X +X 7
WX +Y 4
—-WX +Y #

} (Suffixes 1.)

= YY +WW

YY —WW
XY +74 W
XY —Z W
WY +Y W
—WY +Y W
7Z Y +X W
~7Z Y +X W

And I now drop altogether the

characteristics, retaining only the current numbers: thus in the set of equations next



AND DOUBLE THETA-FUNCTIONS. 965

92. THIRD set of 16.

wu+u =/ w4 w—u .

14 + 9 } (Suffixes 2.)
8 0 0 8§ = X X +Y Y
12 4 4 12 X X =Y Y
9 1 1 9 Y X +X Y
13 5 5 13 ~-Y X' +X Y’
10 2 2 10 Z X +WY
14 6 6 14 Z X' —-WY
11 3 3 11 WX +7 Y
15 7 7 15 -WX +7Z Y

w+a’ w—u' w4 w—u'

S . % — % . 9}  (Suffixes2)

8 0 0 8 = Z 7 +WW
12 4 4 12 Z 74 —-WWwW
9 1 1 9 W 7Z +7Z W
13 5 5 13 -W 7 +Z W
10 2 2 10 X Z' +Y W
14 6 6 14 X 7Z =YW
11 3 3 11 Y Z +X W
15 7 7 15 -Y Z +X W
93. FourtH set of 16.
w+u u—u' w4 u—u'

He o3 + 9 008} (Suffixes 3.)

12 0 0 12 = X X +WW
8 4 4 8 X X —-WWwW
13 1 1 13 Y X' +Z W
9 5 5 9 Y X —-7Z W
14 2 2 14 Z X +Y W
10 6 6 10 Z X =Y W
15 3 3 15 WX +X W
11 7 7 11 WX —-X W
wa! w—u w4 u—u'

HSY o0 - % . %} (Suffixes 3.)

12 0 0 12 = Y Y +72 7
8 4 4 8 Y Y +7Z 7
13 1 1 13 XY +WZ
9 5 5 9 XY +WZ
14 2 2 14 WY +X 7
10 6 6 10 -WY 4+X 7
15 3 3 15 Z Y +Y 7'
11 7 7 11 —Z Y +Y 7
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w—1f

w+u

94, F1rTH set of 16.

u—u'

9 9} (Suffixes 0.)
1 0 0 1 = E+G .E+& 4+ F+H . V4+H
5 4 4 5 1. E—G . + <F—H ’
9 8 8 9 E+G ., - r+EH
13 12 12 13 4E—-G . — 4F—H
3 2 2 3 F+H ) + E+4+G ”
7 6 6 7 F—H . + iE—-G
11 10 10 11 — .F+H » + E+G ”
15 14 14 15 —iF—H ., 4+ iE—-G
wtw  w— wtu W=
3 - 3} (Suffixes 0.)
1 0 0 l1 = E-G .F-G + F—-H.F-H
5 4 4 5 LE+G w4+ dPrH
9 8 8 9 E—G y - PF-H
13 12 12 13 iE+G  ,  — 4FP4+H
3 2 2 3 —H , + E-G
7 6 6 7 iF+H . + LBE+G
11 10 10 11 — F-H » + E-G ’
15 14 14 15 —iF+H 4+ JE4+G L
95. SIxTH set of 16.
w4 w—u u+u w—a!
9 3+ (Suffixes 1.)
5 0 0 5= E—iG . E+iG& + F—H . F+H
1 4 4 1 —iE+4+G " — wF+H ’
8 13 13 8 BE—{G ., —~ F—H
9 12 12 9 —iB+iG + iF+H
7 9 2 7 F—iH + E—iG
3 6 6 3 —iF4+H — iB4+iG
15 10 10 15 — F—H ” + E—iG ’
11 14 14 11 . +iH ’ — 241G ’
wtu w—u w1 U1t
2 9 - 9 3} (Suffixes 1.)
5 0 0 5 = HR+:@G . E—& + F+H . F—H
1 4 4 1 —2E—iG ' — 4. F—iH '
13 8 8 13 E+iG ’ — F+H '
9 12 12 9  —iE—iG + F—H
72 2 7 F+H + E+G
3 6 6 3 —iF—H — E—iG Y
15 10 10 15 — F+<H 1 + E+iG ’,
11 14 14 11 ++F—H . — #.E—iG ”
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96. SEVENTH set of 16.

w4 w1 u+u w—
HyY o + 9% . 8} (Suffixes 2.)
9 0 0 9 = E+G .E4+G& 4+ F-H.F-H
13 4 4 13 iE—G .+ WF+H "
1 8 8 1 E+G w — F-H
5 12 12 5 iE—G i — F+H .,
11 2 2 11 F+H .+ E—G .
15 6 6 15 Z..F_H 2 + ’I:E'I—G I
3 10 10 3 F+H , — .BE—G i
7 14 14 7 wF—H . — «E+G ’
wtu w—u ERT w1
% - 9 3} (Suffixes 2.)
9 0 0 9 = E-G .EF-G¢ + F+H . F+H'
13 4 4 18  iE+G s 4+ WF—H
1 8 8 1 E—G s — JF+H
5 12 12 5 (E+G w = 4F—H
11 2 2 11 - F—-H ' + E+G ’
15 6 6 15 4F+H , 4+ iE—G
3 10 10 3 F~H , - .E+G
7 14 14 7 iF+H .  — iE—G .
- 97. ErcuaTH set of 16.
wtu! U= wtu -
Y 008 + % . 8} (Suffixes 3.)
13 0 0 183 = E—iG.E+:G& + F+H . F—H
9 4 4 9 —i.E+4+i«G ’ — 2.F—7H ’
5 8 8 5 E—iG — F4+H
1 12 12 1 —iB+iG + iF—H
15 2 2 15 F—/H 5 +  E4G ”
11 6 6 11 —iF+H ,. — iE—G
7 10 10 7 F—H , — E+iG .
3 14 14 38 —iF+H + iE—iG
w+ou U=’ wtuw! w—
S L8 — % . 9} (Suffixes 3.)
13 0 0 13 = E+4«G . B—i@¢ + F—H . F4+:H
9 4 4 9 —iE—G — iFH
5 8 8 5 E+iG - F—H
112 12 1 —E—G + WFP+H
152 2 15 F+H , + E—iG
11 6 6 11 —iF—H — B¢,
7 10 10 7 F+H ,, — E—iG
3 14 14 38 —iF—iH ,  + iE+G
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98, NINTH set of 16.

w+uf w—u' u+u u—1'
3 + 31 (Suffixes 0.)
2 0 0 2 = I4K.TI'4+K + J+L . J+1/
6 4 4 6 I+K - J+n
10 8 8 10 4iI—-K + WJ-L
14 12 12 14  I—K . - iJ-L
3 1 1 3 J+u + I+K
75 5 7 —J+L . — I+K
11 9 9 11 J=L + iI-K
15 13 13 15 —iJ—L i — (I-X
vt w—u ! w—u
Y b — } (Suffixes 0.)
2 0 0 2= I-K.I-K + J-L.J-U
6 4 4 6 I-x - J-L
10 8 8 10 iI+K ’ + +J+L ’
14 12 12 14 I4+K — iJ+u
3 1 1 3 -u . + I-K .
7 5 5 7 —J-L . + I-K .
11 9 9 11 AL + iI+K .
15 13 13 15 —J+L + I+K
99. TENTH set of 16.
w+u/ u— u+ w—1/
e + } (Suffixes 1.)
6 0 0 6 = I+K.I'+K + J-L.J-I
2 4 4 2 I+K - J-u
14 8 8§ 14  I-K + J+L .
10 12 12 10 <I-K — J+n o,
7 ]. 1 7 J+L ™ + I_'K i3
3 5 5 3 J+L - I1I-X .
15 9 9 15  iJ-L + WI+K .
11 13 13 11 wJ—=L ., — «I+K ’
w4 w—u w4 u—y'
+{ — 3} (Suffixes 1.)
6 0 0 6 = I-K.I'-XK' + J+L.J+L
2 4 4 2 -, - J+L
14 8 8 14  4I+K £ oLI-L
10 12 12 10 I+K — 4J-L
71 1 7 L . + I4+K .
3 5 5 3 JI-L - I+K
15 9 9 15  J+L + iI-K .
1 13 13 11 J+L - iI-K
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100. ELEVENTH set of 16.

u! u—! utw w1

#HIY .8+ 5 . 9} (Suffixes 2.)
10 0 0 10 = TI—K.I'+K + J—iL . J+l/
14 4 4 14 I—K ” —  J—L ’

2 8 8 2 —il+K .  — iJ+iL .

6 12 12 6 —il4+iK .+ idJ+il
1 1 111 J—L o, + I—K
15 5 5 15 —J—iL , 4+ I—K

3 9 9 3 —iJ+iL . — iI+K .

7 13 13 7 +4iJHiL . — 4iI4dK
w4t u—u' wt+u’ U=

HY . % — % . 8} (Suffixes 2.)
10 0 0 10 = I+44K.TI'—K' 4+  J+L . J—iI/

14 4 4 14 I+iK ,  — J+iL

2 8 8 2 —iI—iK .  — iJ—il .

6 12 12 6 —il—K . 4+ idJ—iL .
1 1 1 11 J+iL ., + I+iK
15 5 5 15 —J4iL ,  + I4+K

3 9 9 3 —iJ—iL .  — {iI—iK .

7 13 13 7 +eJ—L ” — 1I—K ’

101. TwerLrrH set of 16.
udu U= w+! u—u
B ST N (Suffixes 3.)
14 0 0 4= I—K.I'+/XK + J+iL . J—L/

10 4 4 10 I—K ” - J+L ’

6 8 8 6 —iI+K . — iJ—iL

2 12 12 2 —iI+K , 4+ <J—iL
51 1 15 J—iL . 4+ I+iK .
11 b 5 11 J—iL ’ —  JI+/K '

79 9 7 —iJeiL . — iI—K .

3 138 138 38 —iJ+iL .,  + <I—iK .
u+u U—u w+u w1’

Hy . 8 — 8 . 8} (Suffixes 3.)
14 0 0 14 = TI+4+iK.I'—K + J—L . J'+L
10 4 4 10 I+iK  ,,  — J—iL

6 8 8 6 —il—iK .,  — iJ4+dl

2 12 12 2 —il—K . 4+ iJHL .
151 1 15 J+il .,  + I—K
1 5 5 11 J+in .  — I—iK .

79 9 7 —id—L ., — <I4+iK

3 13 13 3 —iJ—L ..+ il+K .

MDCCCLXXX, : 61
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102. THIRTEENTH set of 16.

w+u

=

3+ 3+ 9} (Suffixes 0.)
30 0 8= M+Q.M+Q + N+P.N4P
74 4 7 iM—Q ., — IN=P
18 8§ 11 iM—Q ~ , + iN—-P
1 12 12 15 —M+Q . + N+P
2 1 1 2 N+P ., o+ M+Q
6 5 5 6 —iN-—P D4 iM—-Q
10 9 9 10 iN-—P L4 M—-Q
14 13 13 14 N+P L - M+Q
[ w—' wtu! U—1
& — 93} (Suffixes 0.)
3 0 0 3= M-Q.M-Q + N—P.N-P
7 4 4 7 iM+Q . — IN+P
11 8 8§ 11 L M+Q ”» + «N+P .,
5 12 12 15 — .M—Q w4+ N—-P
2 1 1 2 N—P ., 4+ M-Q
6 5 5 6 —iN+P 4+ iM+Q
10 9 9 10 iN+P L+ IM+Q .
14 13 13 14 N—P . - M-Q
103. FourrEENTH set of 16.
i+ w—1u WU+ U=
HY 3 3} (Suffixes 1.)
7 0 0 7= M—iQ .M+/Q + N+4iP.N—PF
3 4 4 3 —iM4iQ » + N—P "
58 8 15 iM44Q . 4+ iN—P
11 12 12 11 M—:Q ’s — .N+P ’
6 1 1 6 N —P D M,
2 5 5 2 —{N—P LM,
14 9 9 14 4N 4P ” + M—2Q '
10 13 13 10 N —iP L MyiQ
wtu w—u' w+u w—u!
5 $ - 9 3} (Suffixes 1.)
70 0 7= M+iQ.M—iQ + N—P . N+P
3 4 4 3 —tM—iQ ’ + «.N +P )y
15 8 8 15 —iM—iQ L+ iN4P
11 12 12 11 M+12Q ’ — N +P .
6 1 16 N+ .+ M—iQ
2 5 5 9 —iN—P L AMAQ
14 9 9 14 +4¢.N —P ' + 2. M+1Q ys
10 13 13 10 N +4P L - M—Q
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104, FrrrEENTH set of 16.

w+ - w+u U—
e + 9 } (Suffixes 2.)
11 0 0 1l= M—iQ.M+iQ + N-—iP.N+P
15 4 4 15 iM+Q w  — iN4iP .,
3 8 8 3 —iM+:Q .  — iN4P
712 12 v M—iQ . - N—p
10 1 1 10 N —iP s+ M—iQ
14 5 5 14 —iN+4P w o AM4Q
2 9 9 2 —iN+iP »  — M+4Q .
6 13 13 6 — N—iP s+ M—iQ N
. w+u w1y Wt w—a!
% - 3} (Suffixes 2.)
11 0 0 11 = M+:Q . M—Q + N+4+7P . N —P
15 4 4 15 iM—iQ . — AN—P
3 8 8 3 —iM—iQ w — iN—P
7 12 12 7 M+4Q ’ — N+/P ”
10 1 1 10 N +iP N+ M+,
14 5 5 14 —4iN—/P » + 2. M—2Q '
2 9 9 9 —iN—{P n o — i M—iQ .
6 13 13 6 — N+P 5 + M+4Q ’
105. SIXTEENTH set of 16.
w+af w—u w+u U=
H 4 + 3} (Suffixes 3.)
15 0 0 5= M—-Q.M-Q + N+P.N+P
11 4 4 11 —iM+Q s+ IN—P .
7 8 8 7 —iM+Q w  — iN—P
3 12 12 3 — M—Q ., 4+ N4P .
14 1 1 14 N —P L+ M+Q .
10 5 5 10 —iN+P L+ iM=Q
6 9 9 6 —iN+P . — iM—Q
2 13 18 2 — N-P L+ M+Q
w+ w—1! wu u—u!
1y - 3} (Suffixes 3.)
15 0 0 15= M+Q.M+Q + N-—-P.N-P
1. 4 4 11 —iM—Q .+ iN+P
78 8 7 —iM—Q . — iN+P
3 12 12 3 — M+Q .+ N-P i
14 1 1 14 N+P .+ M—Q
10 5 5 10 —iN—-P , 4+ M+Q
6 9 9 6 —iN—P L — AM+Q N
9 13 13 2 — N+4P w4+ M—Q .
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106. In the square set, writing u’=v’=b, and a, B, y, 8 for X', Y, Z’, W’ ; also
slightly altering the arrangement,

the system becomes and further writing herein u=0, ¥=0 it becomes
& XY Z W 0 o
FlLol=la B v 8 S| 0| = | A+ =1 0
bl =|a —p q —0 4| = | L—ptqt— = 4
8 = o ﬁ — — 8 — aQ._ﬁQ_,\Q_SE — 8
12 | = o —ﬁ —c P 12 — aﬂ_/;&_,yz_i_;}z — 12
1= p o 0 oy 1 2(aB+48) = 1
5| =1|p —a o —q 5 0
91 =18 a =3 —v 9 2(afi—yd) =9
13 = ﬁ —o —d o 13 O
2| =|q ) @ B 2| = 2(ay+B8) = 2
6l=|v —8 a2 —p = | 2(ay—p7) =| 6
10 = | ¢ 6 —a —f 10 0
U | =|qy -6 —a B 14 0
Bl=10 0 B« 3= 2(«+py) =3
=10 =y B —a 7 0
Hi=1s q —f —« 11 0
I 151 =18 —q —p 4 15| = 2(w5-——-ﬂe\/) = | 15

viz.: this last is the before-mentioned system of equations giving the values of the
10 zero-functions ¢ in terms of the four constants e, B, y, 6.
107. The system first obtained is a system of 16 equations

9o (u, v)=aX+BY +yZ+6W, &c.

showing that the squares of the theta-functions are each of them a linear function
of the four quantities X, Y, Z, W. If the functions on the right hand side were
independent (asyzygetic) linear functions of (X, Y, Z, W) it would follow that any
four (selected at pleasure) of the squared theta-functions were linearly independent,
and that we could in terms of these four express linearly each of the remaining
12 squared functions. But this i1s not so; the form of the linear functions of
(X, Y, Z, W) is such that we can (and that in 16 different ways) select out of
the 16 linear functions six functions, such that any four of them are connected
by a linear equation; and there are consequently 16 hexads of squared theta-
functions, such that any four out of the same hexad are connected by a linear relation.
The hexads are shown by the foregoing “ Table of the 16 KumMER hexads.”

108. The a posterior: verification is immediately effected ; taking for instance the
first column, the equations are



AND DOUBLE THETA.FUNCTIONS. 973

Iy X Y Z w
A 11 = 9 y —B —a,
B 7 3 —y B —a,
AB 6 ¥ —3 o —B,
CD 2 Y ) o J,
CE 1 B o o Vs
DE 9 B o o —.

viz : it should thence follow that there is a linear relation between any four of the six
squared functions 11, 7, 6, 2, 1, 9: and it is accordingly seen that this is so. It
further appears that in the several linear relations, the coefficients (obtained in the
first instance as functions of «, B, y, 8) are in fact the 10 constants ¢ : the 15 relations
connecting the several systems of four out of the six squared functions are given in
the table.

Read
™37 —? 3740 9,2 —c?9* =0,
109. 9 11 7 6 2 1 9 =0
c? 6 — 2 -1 -9
6 +15 —12 + 4
— 2 —15 + 8 — 0
1 +12 — 8 + 3
— 9 — 4 + 0 — 3
6 3 — 0 + 8
— 2 — 3 + 4 —12
1 + 0 — 4 —15
— 9 — 8 +12 . +15
—15 + 3 + 2 — 6
—12 + 0 + 1 — 6
— 4 + 8 + 9 — 6
— 3 +15 + 9 — 1
— 0 +12 + 9 — 2
— 8 + 4 + 1 — 2

110. The first set of 16 equations is the square-set, which has been already con-
sidered. If in each of the other sets of 16 equations we write in like manner »'=0,
each set in fact reduces itself to eight equations; sets 2, 3, 4 give thus 8488,
=24 equations; sets 5 to 8, 9 to 12, and 13 to 15, give each 8484848, =32
equations ; or we have sets of 24, 32, 32, 32, together 120 equations, the number
being of course one half of 256—16, the number of equations after deducting the
16 equations of the square set.
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111. THE first set, 24 equations.

This is derived from the second, third, and fourth sets, each of 16 equations, by
writing therein «'=0. Taking «,, B, y,, 8, for the zero-functions corresponding to
X,, Y, Z;, W, then on writing «'=0, X\, Y, Z,, W," become a;, 8;, v;, 6;- In the
second set of 16 equations, the first equations thus are '

S, u. Su=o X, +vZ, 0=3Y,+5W,
Spu Su=o X, —y 2, 0=8,Y,—8,W,,

viz., the equations of the column require that, and are all satisfied if, 8,=0, §,=0:
hence the zero functions are e, 0, y,, 0 ; and this being so we have only the equations
of the first column. And similarly as regards the third and fourth sets; the zero
values corresponding to

Xl’ Yl’ Zl’ Wl Xz: Y?,s Zz, Wz X3, Ys, Zg, Ws
are @, 0 vy, O a, B, 0 0 s 0 0 &

and we have in all 8488, =24 equations. These are

(Suffixes 1.) (Suffizes 2.) (Suffixes 3.)
Ju . Su X Z Ju . Su X Y Ju . Ju X W
— — —N
4 0 = & 9 8 0 = « B 12 0 = a b
12 8 = & —y 12 4 = o —p 8 4 = & —9
6 2 = g o 9 1 = B o 15 3 = 9 @
14 10 = ¢ —= 13 5 = B —a 11 7 =-—3 a
Y W z W Y Z
—" = —N —
5 1 = = Y 10 2 = a B 13 1 = a b
13 9 = & —qg 14 6 = a« —pB 9 5 = a —o
7 3 = g o 11 3 = B o 14 2 = & P
15 11 = § —= 15 7 = B —a 10 6 =—o o
40 . 30 : J0 . 90 : 30 . 30
4 0 = &+q° 8 0 = &+ 12 0 = o248
12 8 = a—q? 12 4 = 2—-p 8 4 = P8
6 2 = 2ay 9 1 = 2ap 15 3 = 2d
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112. THE second set, 32 equations.

975

To exhibit these in a convenient form I alter the notation, viz., I write

E+G, (E—G), (F+H), i(F
s

X,

Y,

Y,

Z,

Z,,

|

W,

E,+iG,, F,—iG,, F,+iH,, F,—iH,

Xy

(E2+G2)a i(Esz“Gz)s (F2+H2), 7'<F2_H2) '
X2a

Yl,

Z,

W,

Ey4iGy, By—iGy, Ty, Fy—iM,

X,

Y.,

Zs,

W,

so that as regards the present set of equations, X, Y, X, &e., signify as just mentioned.
And this being so the corresponding zero-values are

@ 0, y 0 [ a, 0, y, 0 [ a, 0, 0, & | &, 0, 0, &
The equations then are
(Suffizes 0.) (Suffixes 1.) (Suffixes 2.) (Suffixes 3.)
Su,. w X Z Ju o Ju X Z SJu . du X w Ju . Ju X w
1 0=a = 1 4 = —ia —iyg 9 0= x —6 9 -4 = —ig —18
9 8 =a —y 9 12 = —ia +iy 1 8 = « 6 1 12 = —ixg 4148
3 2 = of " 3 6 = —Z.ﬁ/ - 15 6 = é o 15 2 = o o
11 10 = ¢ —= 11 14 = —iy +1a 7 14 = -6 a 7 10 = - & o
Y W Y W Y Z Y Z
5 4 =a g 5 0= a v 13 14 = =« ¢ 13 0= o o
13 12 = a —¢y 13 8 = a —q 5 12 = a —é 5 8 = « — &
7 6=¢q «a 7 2= ¥y @ 11 2= -8 11 6 = —ié —ia
15 14 =y —a 15 10 = y —a 3 10= ¢ «a 38 14 = 0 —da
30 . $0 30 . 30 30 . 30 30 . 30
1 0= a4+ 1 4 = —i(a*+97) 9 0= & 9 4 = —i(2+)
.9 B = a—q? 9 12 = —i(a?—q?) 1 8= a2+ 1 12 = —i(a2—&?)
3 2= 2ay 3 6 = ~ 2ay 15 6 = a6 15 2 = 248
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We again change the notation, writing

113. THIRD set, 32 equations.

I+K, i(I—K), J+L, i(J—L)

X,

Y,

Z,

v

X,

Y,

PROFESSOR A. CAYLEY ON THE SINGLE

Zl’

Il+K1’ Z.(Il_KI)> (J1+L1)» i(Jl—LI)
W,

I, +iK,, I,—iKy, J,+iLg, J,—iL,

e X2, YQ,, z2: Wg X3. Y3, Z3, W3
the zero values being
o 09 y: 0 a‘l: O: O: 81 a’2’ 0> 72: O } aa: Oa O.s 83
Then equations are

(Suffixes 0.) (Suffixes 1.) (Suffixes 2.) (Suffixes 3.)

Su. 9w X 7 Ju . Su X W Su . Ju X Z Su . Ju X W

2 0=a ¢ 6 0= a—¢ 2 8 = —da —iy 6 8 = —ia —id

6 4 =42 —v 2 4= a @ 6 12 = —ia +iy 2 12 = —ix b

3 1=q a 15 9= ¢ =« 3 9 = —iy —ia 15 1= 0 o

7 5 =q —a 11 183 = —6 =« 7 18 = —iy +ia 11 5 = — & P

Y W Y 7 Y w Y z

—— — — —A

10 8=4a ¢ 14 8= &« & 10 0 = P 14 0= a ¢
14 12 = « — 10 12 = o —0 14 4 = o« — 10 4 = o — 8
11 9 =¢q « 7 1= —§ & 11 1= ¥ o« 79 = —id —ia
15 13 = ¢ —a 3 5= & a 15 5 = ¥y —a 3 18 = 96 —ia
90 . 90 90 . .90 90 . 30 90 . 90 '

2 0 = z:cfa-l-'y2 6 0 = o?—6? 2 8 = _Z'(“2+,yi2) 6 8 = —7:(042+32)

6 4 = aP—q? 2 4= a4 6 12 = —i(af—q?) 2 12 = —i(af—8%)

3 1= 2ay 15 9 = 2ud 3 9 = —2ay 5 1= 2a0
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114. FourTH set, 32 equations,

Again changing the notation we write

M2 + in, M2 — @.'Q% N2 + iP2» N 2 P 2 M3 + Q?,-’ 7:(N[?, - Q3 )5 N3 + Pgo i(Ng - P3)
= X Y, Z, w X, Y, Zy, W,

M+Q, i((M—Q), N+P, {(N—P) M,+iQ,, M,—iQ,, N,4iP,, N,—P,
= sz, Yg, zza ‘ W‘J X37 Y3, Zss : W3

“

the zero values being
a, O: 7} 0 I a_l’ O: 01; 8 ! Qo 0-’ 72’ O ‘ 0} B?n 73) 0

and the equations then are

(Suffixes 0.) (Suffixes 1.) (Suffixes 2.) (Suffixes 3.)
Ju.du X Z Ju . u X w Su . Ju X Z Su.du Y Z
—N — —N— —
0 3= a2 ¢« 3 4= —ix 40 15 4 = da —iy 15 0= —8 ¢
15 12 = —a 15 8 = da b 3 8 = —ia —iy 3 12= B8 g
2 1= q = 6 1 = S o« 14 5 = iy —ia 10 5= < —8
14 183 = —q « 10 13 = —6 &« 2 9 = —iy —da 6 9= —qg —8
Y W Y Z Y W X W
~— — — ot )
4 7= «— | 7 0= a 0 11 0 = P i1 4= —8 ¢«
8 11l = a ¢ 11 12 = a — & 7 12 = « —q 7 8= —B —qy
6 5 = ¥ —a 2 5= 10 —ia 10 1 = vy @ 14 1 = Ny —B
10 9= v @ 14 9 = © ia 6 13 = § —a 2 3= ¢ g8
30 . %0 90 . 30 30 . 30 30 . $0
0 3= a2 AR 3 4= —i(a2=8)| 15 4= i(—4Y)| 15 0= —(p*—99)
15 12 = —(22—9%) | 156 8 = (a4 3 8 = —i(a®++Y) 312 = B+
2 1= ay 6 1= 2ud 2 9= — 2ay 6 9 = — 2By

MDCCCLXXX, 6 K
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115. It will be noticed that the pairs of theta-functions which present themselves
in these equations are the same as in the foregoing *“Table of the 120 pairs.” And
the equations show that the four products, each of a pair of theta-functions, belonging
to the upper half or to the lower half of any column of the table, are such that any
three of the four products are connected by.a linear equation. The coefficients of
these linear relations are, in fact, functions such as the a?48% a?—82% 208 written down
at the foot of the several systems of eight equations, and they are consequently products
each of two zero-functions c.

Thus (see ““The first set, 24 equations”) we have

(Suffixes 3.) (Suffixes 3.) (Suffixes 3.)
Su . Ju X W Su . Ju Y Z 90 . 30
— —N
4 8 = a —9§ 5 9 = a —98 4 8 =a?—&
0 12 = a S 1 13 = a 8 0 12 =a+4&
3 15 = & o 2 14 = 38 o 15 8 =2ad
7 11 =-—39§ « I 6 10 =-—9§ o

116. In the left hand four of these, omitting successively the first, second, third,
and fourth equation, and from the remaining three eliminating the X; and W, we
write down, almost mechanically,

Su . Ju

4 8 +2a8, —&§—a? a?—§
0 12 —2 00, . =&ta? ot
3 15 0?48 SF—a?, . 208

7 11 —o?2+&, Fta?, —2ad

and thence derive the first of the next following system of equations ; read

cCipdotis =—CCipdsts s $491=0,

=~ 03015343y F0405 95915 —0oC12979,=0,
CoCrpdeds ™ CuCs Y919 + 3015979, =0,
~ciCe s Yoy —Cludsths =0,

where the theta~functions have the arguments u, v.

Observe that on writing herein »=0, v=0, the first three equations become each of
them identically 0==0 ; the fourth equation becomes — ¢, cs’~cy%c1)*~c,%;*=0, which
is one of the relations between the ¢’s, and which serves as a verification.

But in the right hand system, on writing u==v=0, each of the four equations
becomes identically 0==0. -
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117. The equations are

3| 48 o012 815 711 =0, 3| 59 113 214 610 =o,
s 315 —012 4.8 ¢ 315 —012 4.8
—315 —48 —012 —3.15 48  —012
012 —4.8 3.15 012 —4.8 315
—48 012 —315 —48 —012 —315
s 68 212 115 511 =0, 3| v9e 313 014 416 =0,
e |- 115 —212 68 p 115 —212 68
—115 68 - —211 —1.15 68 —212
212 —68 115 212 —638 115
—68 211 —115 —68 212 —115
$| 06 24 915 1113 =0, s| 17 35 814 1012 =0,
¢ 915 —2.4 0.6 ¢ 9.15 —2.4 0.6
—9.15 0.6 —24 —90.15 06 —24
24 —06 9.15 24  —0.6 9.15
—06 24 —915 ! —06 24 —915

3| 36 1.4 912 1411 =0, S| av 35 0.5 813 =0,
¢ 912 —14 3.6 ¢ 912 —14 36
—9.12 36 —14 —912 36 —l1.4
14 —36 9.12 | 14 —36 9.12
—3.6 14 —9.12 —36 14 —9.12
$| 89 0.1 2.3 1011 =0, 9| 1213 43 6.7 1415 =0,
¢ —23 0.1 8.9 ¢ —23 0.1 8.9
2.3 -89  —0.1 2.3 —89  —01
—0.1 8.9 2.3 —01 8.9 2.3
—89 01 —23 —89 01 —23
9| 4.6 0.2 1.3 57 =0, 3] 911 1315 1214 810 =0,
p —1.3 2.0 4.6 ¢ —13 0.2 4.6
13 —46  —0.2 1.3 —46  —02
—0.2 4.6 1.3 —02 —46 1.3
—4.6 02 —13 4.6 0.2 —13
3] 612 28 3.9 713 =0, $| 111 515 414 010 =0,
c 39 —28 —6.12 p 39 —28 6.12
—39 6.12 2.8 —39 —6.12 2.8
28 —6.12 —3.9 2.8 6.12 —3.9
612 —2.38 3.9 —612 —28 3.9 |

6 K 2
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—1.6

3| 615 18 09 714 =0,
o 0.9 —18 —615
—0.9 615 1.8
18 —6.15 —0.9
615 —18 0.9
$| 49 112 215 710 =0,
o 215 —112 49
—2.15 49 112
112 —4.9 2.15
—49 112 —215
3| 412 08 19 513 =0,
0 —19 08 412
1.9 —412  —08
—08 412 1.9
—412 08 —19
3| 415 38 29 514 =0,
o —29 38 415
2.9 —415 —38
—38 415 2.9
—415 38 —29
$| 69 812 015 510 =0,
c —015 312 —69
0.15 —6.9 312
—312 6.9 =015
69 —312 015
9| 1215 03 12 1314 =0,
o 12 —03 —1215
1.2 1215 03
0.3 —12.15 1.2
1215 —03 12
$| 16 84 815 1013 =0,
o 815 —3.4 1.6
—8.15 16  —34
34 —16 8.15
34 —815

211 512 413 3.10
09 —18 6.15
—0.9 —6.15 1.8
1.8 6.15 —0.9
—6.15 —1.8 0.9
013 58 6.11 3.14
215 112 —49
—2.15 —4.9 1.12
—1.12 49 2.15
49 —112 —215
311 715  6.14 2.10
19 —08 412
—1.9 —4.12 0.8
0.8 4.12 —1.9
—412 —0.8 1.9
011 712 613 1.10
—2.9 38  —4.15
2.9 415 —38
—38 —4.15 2.9
415 38 —29
213 7.8 411 1.14
015 312 —6.9
—0.15 —6.9 3.12
—312 69 0.15
69 —312 —0.15
811 4.7 5.6 9.10
1.2 —03 12.15
—-12 —12.15 0.3
0.3 1215 —1.2
—1215 —0.3 12
2.5 0.7 1112 9.14
—815 —3.4 1.6
8.15 1.6 —34
34 —16 —8.15
815 3.4 8.15
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3 2.6 0.4 8.12 10.14 =0, 3 1.5 3.7 11.15 913 =0.
¢ —8.12 0.4 —2.6 c —812 —04 2.6
8.12 —2.6 0.4 8.12 26 —04
—0.4 2.6 —8.12 ' 04 —26 —8.12
2.6

—0.4 8.12 —2.6 0.4 8.12

118. The foregoing equations may be verified, and it is interesting to verify them,
by means of the approximate values of the functions: thus for one of the equations
we have

—CyCr933915 — 1 . 1 . 2Acosim(u+tv)42A  cos yw(u—u).
—2A cos Lm(u—+v)+2A" cos Lm(u—v)

—2A sin 3m(u-+v)42A" sin S (u—v)

=0, =0,
viz., the equation to be verified is here

—4A? +4A%

+4A2 cos? L (u4v) —4A" cos® Jm(u—0)
+4A” sin? Y (u-+v) — 4A” sin® Ln(u—v)
=0, which is right.

119. In the equation

CoCiod Yy Tee. 2Q.1.2Q cos L7u.1

—C1C4 ¥y H1o —2Q.1.2Q cos 37u.1
+050 914dn
=0, =0;

this is right, but there is no verification as to the term cyce9,,9;; taking the more
approximate values, the term in question taken negatively, that is <-cyce9;49,; is ==

—(2A424"). 28, —2Ssindmv. =24 sin fa(u4-v)+ 24 sin da(u—v),
which is =

~8SY A4 A)? cos 34882 A+ A)A cos drr(u20)+ 88 (A4 A)A cos Lr(u—2v)



982 PROFESSOR A. CAYLEY ON THE SINGLE
and this ought therefore to be the value of the first two terms, that is of
(2Q+2Q°—2A —2A")(1—2Q*—28% {2Q cos Imu-+2Q? cos §7u
+2A cos Jm(u+2v)+2A7 cos dm(u—2v)} (1 —2Q* cos mu-+28* cos mv)

—(2Q4+2Q°+2A 42A") (1 —2Q*428%{2Q cos Lmu+2Q° cos 7u
—2A cos $m(u420) —2A" cos ym(u—2v) } (1—2Q* cos mu—2S* cos mv),

which to the proper degree of approximation is

=(2Q—4Q*—4QS*+2Q?—2A —2A"){2Q cos Jmu—4Q cos 37 cos 7
+4Q8S* cos L7u cos mv+2Q° cos Swu-2A cos tm(u-+2v)+2A" cos Lm(u—2v)}

—(2Q—4Q5+4QS8*+2Q°+2A42A") {2Q cos Aru— 4QP cos Lmru cos mu
—4QS* cos mru cos mv+2Q° cos Fru—2A cos fm(u+ 20) —2A" cos m(u—2v)} .
This is
(2M,—20,)(2M +20)
— (2M,420,)(2M—20), =8(M,0—M0,)

if for a moment
M=Q cos Lmu—2Q" cos L7u cos wu+Q? cos $mru, M;=Q—2Q°+4+Q?,
Q=2Q8* cos 7u cos v+ A cos tm(u—+20)+ A’ cos Im(u—20), Q,=2QS* +A+A,

or substituting and reducing, the value of 8(M,Q—MQ,) to the proper degree of
approximation is found to be

=—8Q(2QS*+A+A’) cos Imu
4+ 8(Q*S*48QA) cos L (u-+2v)+ 8(QS*+8QA") cos dm(u—2v),

which in virtue of the relations QA=A%S?, QA’:A'QSQ, Q*SP=AA’, is equal to the
foregoing value of ¢4¢49,,9;;. I have thought it worth while to give this somewhat
elaborate verification.

Résumé of the foregoing results.

120. In what precedes we have all the quadric relations between the 16 double
theta-functions : or say we have the linear relations between squares (squared func-
tions) and the linear relations between pairs (products of two functions): the number
of the asyzygetic linear relations between squares is obviously =12; and that of the
asyzygetic linear relations between pairs is =60 (since each of the 30 tetrads of pairs
gives two asyzygetic relations): there are thus in all 12460, =72 asyzygetic linear
relations. But these constitute only a 13-fold relation between the functions, viz.,
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they are such as to give for the ratios of the 16 functions expressions depending upon
two arbitrary parameters, x, y. Or taking the 16 functions as the coordinates of a
point in 15-dimensional space, these coordinates are connected by a 13-fold relation
(expressed by means of the foregoing system of 72 quadric equations), and the locus
is thus a 13-fold, or two-dimensional, locus in 15-dimensional space.

Hence, taking any four of the functions, these are connected by a single equation ;
that is regarding the four functions as the coordinates of a point in ordinary space,
the locus of the point is a surface.

In particular the four functions may be any four functions belonging to a hexad :
by what precedes there is then a linear relation between the squares of the four
functions : or the locus is a quadric surface. KEach hexad gives 15 such surfaces, or
the number of quadric surfaces is (16 X 15=) 240.

The 16-nodal quartic surfaces.

121. If the four functions are those contained in any two pairs out of a tetrad of
pairs (see the foregoing “Table of the 120 pairs ”), then the locus is a quartic surface,
which is, in fact, a KuMMER’s 16-nodal quartic surface. For if for a moment x.y and
zw are two pairs out of a tetrad, and r.s be either of the remaining pairs of the
tetrad ; then we have rs a linear function of axy and zw: squaring, »%® is a linear
function of a%?, wyzw, 22w?; but we then have 7* and s?, each of them a linear function
of 22, 4, 2%, w®; or substituting we have an equation of the fourth order, containing
terms of the second order in (2% 9% 2% w?), and also a term in ayzw. It is clear that
if instead of r.s we had taken the remaining pair of the tetrad we should have obtained
the same quartic equation in (x, ¥, 2, w). And moreover it appears by inspection
that if xy and 2w are pairs in a tetrad, then az and yw are pairs in a second tetrad,
and ww and yz are pairs in a third tetrad: we obtain in each case the same quartic
equation. We have from each tetrad of pairs six sets of four functions (z, ¥, 2, w):
and the number of such sets is thus (36.80=)60: these are shown in the foregoing
“Table of the 60 GOPEL tetrads,” viz., taking as coordinates of a point the four
functions in any tetrad of this table, the locus is a 16-nodal quartic surface.

122. To exhibit the process I take a tetrad 4, 7, 8, 11 containing two odd functions ;
and representing these for convenience by x, y, 2, w, viz.: writing

34 I3 g Iy (W)=2, Y, 2, w

we have then X, Y, Z, W linear functions of the four squares, viz, it is easy to
obtain

a(@?+24) =8 (P +uw?) =2(a?— &)X,
o( » )=e( » )=2( ,» W,
— B =) by (g ) =3B )Y,
=y( o )+BC ., )=2( ., )Z
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Also considering two other functions 3,(u) and $,(u), or as for shortness I write
them, 9, and 9,5, we have
Y'=aX+BY+yZ+8W,
Yt =aX—BY—yZ+4-3W,

and substituting the foregoing values of X, Y, Z, W, we find

M9 =Ax’+By*+ C2+Du?,
M3, ,>=Cax* 4Dy~ A2+ Bu?,

where writing down the values first in terms of «, 8, y, d and then in terms of the c’s,
we have

M= @—®)F—y) =} <i—oh

A= BO—ay? =, —ci
B=—ad(8*—y*)+By(e*—8)=,, e5ct — 5’
C= o?B—y& = ¢’e)?,

D=—ad(8—y") —By(#*—&)=,, C15°0st —cg’cs’ ;
and we then have further

that is
CiCqdgHo==CiCr9% - CsCryW ;

whence equating the two values of 94%9,,* we have the required quartic equation in
z, Y, 2, W.

128. But the reduction is effected more simply if instead of the ¢’s we introduce the
rectangular coefficients a, 0, ¢, &e. 'We then have

M=(c"—b?), A==—a"c, C=da,
B= _bic/—bl'cl/, =b0 ; D:b/b//+c'c//, :a//alf,
and the equations become

(=03t =—=a"ca® +bcy*4 o' bF—a'a w?,
(=N = dbar’=~a'a"yP—a P+ bew?

VO e= a xz/—=b"cyw,

so thut the elimination gives
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b (—a ca+bey* +a'bz —a'a”w?)
X( dba—d'a"yP—a" e+ bcwz) =(c"? =02 {ax®P—~V"cyPuw 42,/ —ab”cxyaw},

viz.: this is
— co'oa"bb’cc”(aa‘*L +yt 2t wt)
Fa’b'cc” (a4 0) (aPy* +7*u?)
F (Ve (Pt a ) —  abP—c ) e
+ {0 (@ + 1% +b"c’ (02— ")y w?
—a”"bb’c (a4 ) (w4 y%2?)
—2(b2 ="/ —ab” ¢ xyzw=0.

124. In this equation the coeflicients of a%? and 3*w?® are each =a'a”be(D?+c¢™?), as
at once appears from the identities ‘

{a’b.b'—-(/’.a"czw(b’2 "),
ab.c” =V .w'c= (b*—c"),

{ ’ // Z)/ 'c//.bc: _b//(b/2 I/Q/)
aa’.c—bbe= ¢ (b?—"),

by multiplying together in each Pair the left hand and the right hand sides respec-
tively. Substituting and dividing by —a'«”bb’cc”’, we have

-yttt
a?+v? V2 4 ¢
b (9023/2 + zg,wg) *g;— o (wgzz —|- Y Z_ (9621,02 + yzzg)

2(5/2 l/z)z\/ """" b// J
+ a'a”bb'cc”

xyzw=0;

or if we herein restore the ¢’s in place of the rectangular coefficients this is

.1}4‘—}- y4+z4~_l_w4~

61 -+ (/2
%,

(mQ 2_‘_ AQwZ) LA (.’15222 + y2w2) .H__ts.) (ZU2’1/02+ :’/222)

432
_l__QCOO%"mCls(% % )wjzw 0,
¢, c,%c,Pogte ey

which is the equation of the 16-nodal quartic surface.
Substituting for x, ¥, 2, w their values 3,, 94, 95, 97 (), we have the equation con-
MDCCOLXXX. 6 1
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necting the four theta-functions 4, 7, 8, 11 of a GoreL tetrad. And there is an equa-
tion of the like form between the four functions of any other GOPEL tetrad: for
obtaining the actual equations some further investigation would be necessary.

The xy-expressions of the theta-functions.

125. The various quadric relations between the theta-functions, admitting that
they constitute a 13-fold relation, show that, the theta-functions may be expressed as
proportional to functions of two arbitrary parameters x, ; and two of these functions
being assumed at pleasure the others of them would be determinate ; we have of course
(though it would not be easy to arrive at it in this manner) such a system in the
foregoing expressions of the 16 functions in terms of a, y; and conversely these
expressions must satisfy identically the quadric relations between the theta-functions.

126. To show that this is so as to the general form of the equations, consider first

the ay-factors v/a, v/ab, &c.  As regards the squared functions (v/ab)?, we have for
instance

1 —
(\/Ow)gze—z{abfcld/e/ +abfedet24/XY},

— 1 —
(Ved)*=gi{edfabe+cd fabe42v/ XY},

. N R — . .
each of these contains the same irrational part ‘-9‘,2\/ XY, and the difference 1s

therefore rational ; and it is moreover integral, for we have
— _— 1
(Vab)y— (v cd)*= grabe,d,—ab cd) (fe, —fe),

where each factor divides by 6, and consequently the product by ¢*; the value is in
fact

=(e—f) | 1, x4y, xy |,
1, atb, ab
1, ¢c+d, ed

a linear function of 1, x4, 2y ; and this is the case as regards the difference of any
two of the squares (v/ab)?, (v ac)?, &c.; hence selecting any one of these squares for
instance (v/de)?, any other of the squares is of the form

N (ot y) oy p(v/de)t s (p=1)

and obviously, the other squares (v/a)?, &c., are of the like form, the last coefficient p
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being =0. We hence have the theorem that each square can be expressed as a linear
function of any four (properly selected) squares.

127. But we have also the theorem of the 16 KumMER hexads.

Obviously the six squares

(Vap, (VOp, (Vep, (VP (v, (V)

are a hexad, viz.: each of these is a linear function of 1, x4y, ay, and therefore
selecting any three of them, each of the remaining three can be expressed as a linear
function of these.

But further the squares (v/a)?, (v/0)% (vVab)y, (Ved)?, (Vce), (v/de)® form a
hexad. For reverting to the expression obtained for (v/ab)?—(1/cd)?, the determinant

contained therein is a linear function of aa, and bb, that is of (v/a)? and (vV/b)?; we
in fact have

(@a=0).| L, z+y, 2y | =0—c)(0—d)(a—z)(a—y)—(a—c)(a—d)(b—x)(b—y).
1, a-+b, ab
1, c+d, cd

Hence (v/ 55)2—(\/ E:‘c_l)2 is a linear function of (\/ a)?, (v/ b)?; and by a mere inter-
change of letters (v/ab)—(v/ce)?, (v/ab)*—(v/de)?, are each of them also a linear
function of (+v/a)? and (1/b)*; whence the theorem. And we have thus all the

remaining 15 hexads.
128. We have a like theory as regards the products of pairs of functions; a tetrad
of pairs is of one of the two forms

Va/b, v/ ac/be, v/ ad/bd, v/ aey/be and /F/ab, »/c/de, \/dr/ce, v/ er/cd ;

in the first case the terms are

Vaa,bb3,
(}115 {(ab,4a,b)y/cdefc,d e f, 4 (cfd e,+c,fde)y aa,bb,},
9“12‘{ » » +(dfc,e,+d fce) ,, 1,
sl o Aefd o) b

and as regards the last three terms the difference of any two of them is a mere

constant multiple of +/aabb,; for instance, the second term — the third term is
61 2
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1 S S
= ga(ed,—c,d)(fe,—fe)v/aa,bb,=(c—d)(f—e)v/aa,bb,; we have thus a tetrad such

that selecting any two terms, each of the remaining terms is a linear function of these.
In the second case the terms are

{f\/abc def, + t+/abedef?,
;1,{0 ) + ¢, %
1
'é{d 39 + d, D) Vs
1, N
éle 7 + e/ by) 39

whence clearly the four terms are a tetrad as above. And it may be added that
any linear function of the four terms is of the form

1 S
oL (\pa)/abe,d e f 4+ (N py)v/abedet ],

129. Considering next the actual equations between the squared theta-functions,
take as a specimen
¢ P —cy’ 97 +c)? J 12 —cy’ 9?=0,
that is
e (v abP— ey (v/ cdP 4o, (v ce)—e;M(v/de) =0,

where ¢4, €y, €1, Cy= Vab, v cd, ee, n de respectively. Since the functions (v/ ab),

&ec., contain the same irrational term -\/ XY, it is clear that the equation can only be

true if
et =yttt =0,

and this being so it will be true if
H(Vab) = (VedP} — e {(vab) = (VVee) et { (v ab)P~=(v/dep} =0,
where by what precedes each of the terms in {} is a linear function of (v/a)? and
(v/b)?: attending first to the term in (v/a)? the coefficient hereof is
ef.be.bd.cyt—df.be.be.c) 4 cf.bd.be.c,t,

where for shortness be, bd, &c., are written to denote the differences b—c, b—d, &ec.:
substituting for et its value (v/ed)t, =cd.cf.df-ab ae.be, and similarly for ¢,* and ¢,
their values, =ce.cf.ef.ab.ad.bd, and de.df.ef.ab.ac.bc respectively, the whole expression
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contains the factor ab.bc.bd.be.gfdﬁcf and throwing this out, the equation to be verified

becomes
cd.ae—ce.ad+de.ac=0

which is true identically. The verification is thus made to depend upon that of
cgt—cyt4ct—cy*=0; and similarly for the other relations between the squared
functions, the verification depends upon relations containing the fourth powers, or the
products of squares, of the constants ¢ and £.

130. Among these are included the before-mentioned system of equations involving
the fourth powers or the products of squares of only the constants ¢; and it is inter-
esting to show how these are satisfied identically by the values c,=/2d, &o.

Thus one of these equations is ¢t +o*+cgt=cyt; substituting the values, there is
a factor ce which divides out, and the resulting equation is

ad.af.df.be.be4-cf.ef.ab.ad.bd+ab.af.bf.cd.de—ac.qe.bd.bf. df=0.

There are here terms in a? @, a® which should separately vanish ; for the terms in
?® the equation becomes

dfbe.be+bd.cf.ef+bf cd.de—bd.bf.df=0,

which is easily verified ; and the equations in @ and a® may also be verified.

An equation involving products of the squares is ¢),%c,®—c,%c,*+c;%c?=0. The
term ¢y %, is here v adf.bce 1/ def.abc which is =+/(bc)(df)%.ab.ac.ad.af-be.ce.de.ef,
which is taken =be.dfV/ ab.ac.ad.af.be.ce.de.cf ; similarly the values of ¢,%,2 and ¢y’
are =bd.cf and bf.cd each into the same radical, and the equation to be verified is

be.df—bd..cf+Df.cd=0,

which is right : and the other equations may be verified in a similar manner.
131. Coming next to the equations connecting the pairs of theta-functions, for

instance
C30159 019 CoC1939 15+ C4049791, =0,

CsC15CoC1a i A/ b A/ ad—+/ e/ ae} +c eyl v/ Dy/a=0,
the products V' bd v/ ad and +/be v/ae contain besides a common term the terms
5(dft e, -+ £ ce) v/aa,bb, and o (ofe,d ¢ f od) /a2, b, hence their difference contains
35 (de,—d,e)(fc,—f.c)v/aa,bb, which is =de,fo\/aabb, that is defc\/ay/D: hence the

equation to be verified is

this is

de.fe.c;015000104ucekyky =0

C15CoCra 18 =/befracd v/ aefbed \/bdf.ace +/adf bee, where under the fourth root we

have 24 factors, which are, in fact, 12 factors twice vepeated; and if we write
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,=ab.ac.ad.ae.af.be.bd.be.bf.cd.ce.cf.de.df.ef, for the product of all the 15 factors,
then the 12 factors are in fact all those of II, except ab, ¢f, de; viz., we have

04015001 v/ 11+ (ab) (cf ) (dle).

Again, ¢ ok ey, = v/ acf.bde /bef.ade ~/acdef v/bodef, is a fourth root of a product of
392 factors, which are in fact 16 factors twice repeated, and in the 16 factors, ab does
not occur, ¢f and de occur each twice, and the other 12 factors each once : we thus
have

ek = /T )2 (de)* + (ab)?,

and the relation to be verified assumes the form

Joudes T (g e+ (of F(de =0,

which, taking fo.de=—+/(cf)*(de)*, is right. And so for the other equations. It will
be observed that in the equation de.fc.csci;00010+0Ckrk); =0, and the other equations
upon which the verifications depend, there is no ambiguity of sign : the signs of the
radicals have to be determined consistently with all the equations which connect the
¢'s and the F’s : that this is possible appears evident @ priorz, but the actual verification
presents some difficulty. I do not here enter further into the question.

Further results of the product-theorem, the u4u’ Sformule.

132. Recurring now to the equations in w4/, u—w/, by putting therein u'=0,
we can express X, Y, Z, W in terms of four of the squared functions of w, and by
putting =0 we can express X', Y’, Z’, W'in terms of four of the squared functions of «’;
and, substituting in the original equations, we have the products 9( )u-+u"9( )u—u’
in terms of the squared functions of u and «'.

Selecting as in a former investigation the functions 4, 7, 8, 11 (which were called
x, v, #, w) it is more convenient to use single letters for representing the squared
functions, and I write

S(uauw) . S(u—u) ~ S I/ 920
4 4 = P, 4 = p, 4 = p, 4 = py (=e);
7 7 = Q 7 = q 7 = ¢, 7 = 0,
8 8 = R, = 7, 8 = 7, = 7, (=¢?),
11 11 = 8, 11 = s 1 = ¢, 11 = 0
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Then
X Y Z w XY Z W XY zZ W
P= X =Y 4+7Z =W, p= e —=B+y =3,  p= o —f+y =5
= W —Z 4Y =X, = 8 —y +B—n = 5 —y +8 —a
= X’ -I-Y/ e/ —Wl, r= o —I—,B -y -—-8, Y= a _|_18 —y __8’
S= W +Z —-Y X, s= 8 +y —B —uq, = 8 +y =B —a
Heuce
a(p+r) —8(q+s)=2(a"—8X, a(p’+1) —8(¢"+9) =2(u9——89’)X'Y,
8 ) —o0 =2 2 W:’ 8 2 —_o I =2 3] W)
—B(p—r)+y(g—9)=2(8—y)Y, —B(p'—1") 7@ —5)=2(8—»)Y,
Y 3 +B » =2 I Z’ Y ) +18 2 =2 2 Z'.

and by means of these values

42 =FPXX =a(p+r)(p'+1)+8(q+5)(d +) =ed (p+r)(@ +5)+ (2 +7) (q+5))

4 ” WIW:82 i) +OL2 H) ——0(.8[ iy %) ]s
$E—PXY =B{p—) (/) +1g—9)d ) =Byl (p—7)(g )+ =Yg =),
4 55 Z'Z ='}/2 ) "l"/g2 2 ——BYI: 2 D) :l
Hence

4o —8) (XK= W'W) = (p+)(p'+7) —(q+8) (¢ +5),
HB—=P)(YY—Z Z)=(p—r)(p'—7)—(g—9)(d —),

and substituting in the expressions for P and R,

4(2?—8) (B —y") P =

(B=P(p+)(p'+7)~(q+9) (¢ +5) = (=& [ (p—7)(p'—7)—(¢—3) (@' =) ],
4 , R=

o L » » + . [ y 2 ]

Similarly
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4@ —8)W'X =

ad[(p+r)(p'+7)+(q+)(q'+5) = (p+7) (¢ +5) —8(g+3) (p'+1),

4 ,, X'W=

99 [ 93
B —=yPZY =

IR ]_82 53

By (p—r)(p =)+ (q=3)(¢ =) =B (p—7)(¢ —5) =y q—s)(p' =),

whence

42 =F)(WX=X'W)=—[(p+1)(q'+5)— (p'+7)q+3) )
YB—yNZY =Y Z)=—[(p—r)q —5)—(p'=7")(g—)];

» =y

and substituting in the expressions for  and S

=) (B —7Q=

— (B =P+ +5) = (P47 a9+ =) p=r)g =)= (=) (1)},

» R=
- I [ »

25 J 39 L 3

133. Hence collecting and reducing

42— 8) (B =y P =

— (@ =By =) (P g =8 ) (@ By = &) (pi k0 r = g5 —(s),

4 ” R=

(e B—y—5)(
4 . Q=

(= By =)
4 » S =

— (o + B —y2—8)(

we have py(=cf)=a—B+4y*—8&, r(=cs’) =>4+ B*—y*—8&% and thence

the equations hence become

. )— (@ =B +y*—8)(

) )= (4B =y —&)(
” )+ =By — &)

rot—pot=4(e?—8) (B —") ;

2

2

)s
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(1 —pe*)P =—py(pp'— 99’+W’—88’) +ro(pr' +p'r—qs’ —q's),

EH] R’:'_" 7'0( » 0( 2 ):
» Q= plpg—pg+rs _""5\)_70( s ),
) S= _7'.0( 2 ! )+pO( 2 )

On writing in the equations »'=0, then P, Q, R, 8, p’, ¢/, +, s become = p, ¢, 7, s,
Pos 0, 7, 0; and the equations are (as they should be) true identically. The equations
may be written

wy u— w w oo ' w oo ) [ w ol

¢t et 9.9 A9 L9 9090 929%) (9297 9290 9290 92.99)

8—4) 4 4 —4(4.4 —7.7 488 —11.11) +8(4.8 4+ 8.4—7.11—11.7),

Il

( i) ) 8 8 = +8( i) ) —4( ) ),
(,) 7 7 = 4447 —7.44811—11.8) —8(411—11.4487 — 7.8),
( EH) ) 11 11 = —'8( 2 ) +4( ) );

and there is of course such a system for each of the 60 GOPEL tetrads.

Dyfferential relations connecting the theta-functions with the quotient-functions.

134. Imagine p, q, 7, s, &c.,-changed into @? %, 2%, w?®; that is, let «, ¥, 2, w represent
the theta-functions 4, 7, 8, 11 of u, v; and similarly &, ¥/, #/, w’ those of «’, ¢/, and
%y, 0, zO, 0 those of 0,0. Let u/, v be each of them indefinitely small ; and take

o, —u +'v —, as the symbol of total differentiation in regard to u, v, the infinitesimals
u and v bemg arbitrary : then we have in general

Su4u', v+v)=9(u, v)+0%(u, v)+L0*%(u, v),

and hence

P= (x4 dx+L0%) (x— dw+10%), =u?+ (x0*x— (dx)?),

and similarly for Q, R, S. Moreover, observing that &', 2 are even functions, %/, 2’ odd
functions of (v, v'), we have

, ,
&, y, 7, w=ay+L0%,, 0y, 2+ 50%, owy,

where %, oy, &c. are what d%x, dy, &c., become on writing therein u=0, v=0;

Oy Ow, are of course linear functions, d*x, 8%, quadric functions of %" and /. The

values of «%, 4%, 22, w® are thus a?—4ux,0%), (dy)% 2,°+2:0% (dw,)?; and we have
MDCCCLX X X. 6 M
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2%, (0Yp)® %0%, (bwo)2

o — yﬂy’ 2 __I_ 22/ — ww? = w2w02 + 22202 + x? _— ?/2 __I_ 2% —_— 102’
Pyt —y? PP —w? =—yld  —w¥? —f 2t —w? 2
w? —yPuw’? +4990 —wy? = )t Fazd 42 —wt 4 —f
PP —if? Ryt —wta? =—wtad —f —w? 4R —1p b

185. On substituting these values the constant terms (or terms independent of w, )
disappear of themselves ; and the equations (transposing the second and third of them)
become

R (ey0)® #40%, (owp)?
(zt—z ) {et%e — (o) = (= +4%7) +( o —zfu?) +(—af? +o?) +( zfwl—zdy?),
by —Cul= (o —rut) — (et ) —( au—syP) —(—ape 4%,
p o A% — (2 )= (=2 +2?) +( aw?—2?) +(—a2® +472 ) +( afy® —zfu?),
w  wtw—(w)= —( wfwt—zy?) —(—2®? +of?) —( af —rfu?) —(—ate? +4%?),

where it will be recollected that x, y, z, w mean 9, 3;, 95, 31, (v) ; %, is 9, (0) that is
¢, and z, is 9 (0) that is ¢g.  But the formule contain also

bzwoz (64"”, O:Liv’ c*v’):u’, /UI)Q: 590 ((’7’ 07” Iu’ U)
0%, = (¢, ¢g", cs" Y, )%, dwy=(cy), e YW, V).

The formulee may be written

o ) . 0469‘(04 o (bj)~ R 083\2(08 { (bepy)?
(9. PI—(o9)) 297 2.9 2.9 2.9 &% 2.9 2.9 2.9
(hme & & & 1= (—4 4 +8 §)l+( 4 7 —8 11)+(—4 8 +8 4)+( 411 -8 '),
CV 7 7 l=—( 4 7 —811)|—(—4 4 +8 8)—( 411 —8 7)—(—4 8+8 4),
. 8 8 8 }t= (—4 848 4)/+( 411 —8 7)+(—4 4 +8 8)+( 4 7 —811),
N1 11 11 J=—( 411 —8 N+(—4 8 +8 4)|—( 4 7 =8 11)—(—4 4+8 8),

where d%,, d%;, 0¢;, 0¢;; are written in place of d%x, 0%, 0y, 0%, There is of course a
like system of equations for each of the GOPEL tetrads.

186. Observe that dividing the first equation by 9,*(w), or say by 9,7 the left hand
side is a mere constant multiple of o log 9,; and the right hand side depends only on
the quotient-functions 9, -9, 5}8 +94 953 +9,; each side is a quadric function of (v, v"),
and equating the terms in w’, u'v’, v respectively, we have

a2 a2
[l?bz log Y du dv log 34, d? log 9,

each of them expressed as a linear function of the squares of the quotient-functions

S+ 34 S5+ 3y I+ 9%, The formula is thus a second-deviative formula serving for
the expression of a double theta-function by means of three quotient-functions.
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Differential relations of the theta-functions.

137. In “The second set of 16,” selecting the eight equations which contain Y, and
W, these are

wtu' w—u wtn  w—u (Suﬂixes 1.)
3.9 .9 Y W

’

{4 00— 0 4=Y 4+W,
12 8— 8 12 =Y —W,
6 2 — 2 6 = W4Y,
14 10 — 10 14 = W =Y/,
o5 14 1 5} =X 47,
13 94 9 18 =X —-7Z,
7 84 8 7 =12 +X,

15 11 4+ 11 15 = Z =X,

and then, considering any line in the upper half and any two lines in the lower half, we
can from the three equations eliminate Y, and W, thus obtaining an equation such as

9, 9—9%%, Y, W |=0,
35 9H+99, X, Z
¥yt X', —Z
viz., this is
—2X'Z! (94 Fo—90%4)
+( X'WHYZ) (95 $14+99%)
(=KW YZ) (935954 9y91) =0,

where the arguments of the theta-functions are as above, u--u/, u—w/, u+v, u—w’;
and the suffixes of the X', Y, Z’, W’ are all =1.

138. Suppose in this equation u’ becomes indefinitely small; if w' were =0 the
values of X', Y, Z/, W would be a, 0, y, 0: and hence ’ being indefinitely small we
take them to be «, 68, v, 63, where

,d

du, dv

@

bﬂ, =<u,_(g_b+v/d%)> Y’ and 68’ _—_<u > W, ('LL:U:O).

are in fact linear functions of v’ and .
6 M 2
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We have 9,9,— 9,9, standing for
S(utu)(v—u') — Y, (u4uw') 9, (w—u),
and here 9,(u4-u')=9,409,, 9(v4-u")=9,409); the function in question is thus

(94 + 534) (*9 0 530) — (94— 534) (9ot 590) =2{9409,—9,0%},

,d ,d
where the arguments are (u, v), and the & denotes u %+fv o

I59+ 995, that is 95(u+1)9 (u—u')+ 9 (u+2")9;(u—2’), becomes simply =29,9,,
and similarly 9,399+ 949,5 becomes =29,39,; and the equation thus is

— 20y, (’9 0694 - '94530) + (“1581 +715:81)95'91 + ('— “1581 +')’15:31)31399 =0,

where the proper suffix 1 is restored to the a, 58, y, and 9.

139. The equation shows that the differential combination 9,09,—9,09, is a linear
function of 9,9, and 9,39, the coefficients of these products being of course linear
functions of 4’ and ¢'; writing the equation

we can if we please determine the coefficients in terms of the constants ¢/, ¢, ¢, v, ¢';
viz., taking u, v indefinitely small, we have

Jo=¢, 03, =u'(c, utc, )+ (¢, u+c, W),

0="¢o 4 4 4 4 4
Y=cy 0%y =u'(c) u~4c, )+ (cy u+tc, ),
K=c, = cfutecv,

So=cy, 3= c5utc"v,
or substituting, and equating the coefficients of u and v respectively

cole” W 4,y — ey (e v +c v )= Acicy” +Beged,

oo u e, v') —cey (e +cyv") =Acicy”+Beyey”,

which equations give the values of A, B.
140. Disregarding the values of the coefficients, and attending only to the form of
the equation
909, —9,59,=A%,9,+BI159,,
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this is one of a system of 120 equations; viz.: referring to the foregoing table of the
120 pairs, it in fact appears that taking any pair such as 9,9, out of the upper com-

" partment or the lower compartment of any column of the table, the corresponding
differential combination 9,09,—9,09, is a linear function of any two of the four pairs
in the other compartment of the same column.

Differential relation of v, v and x, v.

141, We have as before, in the two notations, the pairs

A.B 11 .7
C . DE 5.9
D . CE 13 .1
E.CD 14 . 2
F . AB 10. 6

and from the expressions given above for the four pairs below the line, it is clear that
any linear function of these four pairs may be represented by

(a-—b)e (Apy) v/ cdefa b, +N+px)r/cde fab},

where \, p are constant coefficients, and the factor (¢—b) has been introduced for
convenience, as will appear.
We have consequently a relation

S .
V/aa,57/Bb,—/Bb /a8, =" { (\+uy) v/ cdefa, b+ (\+ u) /o d o Fab},

. a. .d ., . . .
where as before o is used to denote u'd—u+v il and ©” being arbitrary multipliers ;
considering u, v as functions of x, ¥, we have

d__de i_{_dfz/ a
du™ du dz ¥ du dJ,

d_dz d d@/d

v dv dz " dv dJ

a . .
and thence b=Pi+ Q- if for shortness P, Q are written to denote u'fl—x+w’@ and
dw = “dy du dv

Ay 0y .
e respectively.
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142. The left hand side then is

_P<\/aa, /BB, — /b, \/aa>+Q<\/a,a/(Z VB = /B /)

dx

the coefficients of P and Q are at once found to be

a—b)+/ab, a,—b,/ab .
=—3¢ \/)%a’ , — 3 \/a:\b/a respectively,

or observing that a—b, =a,—b, =a—>b, the equation becomes

%W &/ab/— {(\+py)v/cdefab, + (\+pz)v/c defab} ;

or multiplying by +/abab, and writing for shortness abedef=1X, a,b/c,d,e,f, Y, this

becomes

0, 1P+ 50+ ) v/ X} +ab{ + Qo) y/ T} =0,
143. There are, it is clear, the like equations
Do (PN Hu)VX JHhe{Qeb g +pin) /Y =,
6, (PASN 4 1Y)V K e { Qo+ )y T} =0,

and it is to be shown that A=N=\"and u=p'=u”. For this purpose recurring to
the forms

v/ a2,54/bb,— «/b_b:b\/aa,_ {(7\-|—,u,y)\/cdefa b, +(\ +px )4/cdefab},
VT W W T-@E=%f{(x’+wy)vadefb,c, + (N +p'w)vadefbe},
Ve dy/aa,—+/aa dy/ cc,= ;-{()\”+ ©"y)v/bdefca,+ (N 4+p"z)4/bdefcal,

multiply. the first equation by +/cc, the second by 4/ aa,, and the third by 4/bb, and
add : the left hand side vanishes, and therefore the right hand side must also vanish

identically.
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144, But on the right hand side we have the term 5\/ defa,b,c, multiplied into
(= 0)eh-+ i)+ B—)al +15)+ o= )N+ "),
and the term —- \/ d,e,fabc multiplied into

(=B, pae) £ (b— ), (V4 '5) - (e — ), (1),

and it is clear that the whole can only vanish if these two coefficients separately
vanish. This will be the case if we have for \, N, \” the equations

(@=b)\4(b— )N+ (c—a)\"=0,
c +a’ i) +b I3} =O’

|

and the like equations for u, u/, . The equations written down give
(@=b)\: b—c)\ : (c—a)N'=a=b:b—c:c—a

that is A=N'=\": and similarly p=p'=u".
145. But this being so, the three equations in P, Q give

+ 20 )V K=0, Qe 5(Akpa)/T=0,

that is
Ao Ao 2 <
v du+,v dv™ —w—?/()\_'_lby)\/X’
Ay 2
du+v dv™ x—y()\+ﬂw)\/?

In these equations «’ and o are arbitrary ; hence A and u must be linear functions of
»’ and ¢ ; say their values are = wu'+p?/, ou'+ﬂ/ respectively. 'We have therefore

dx 2 L ;
Co 2otop/X,  LeKptm)vX
da 9 . ; g -

or, what is the same thing,

a
_%07”5—{= (w+oy)dut (p+ry)dv,

-4 5‘/ =(w+ox)du+ (p+7x)dv,
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whence also

odutrdv= 1 <%—%>,

wdu+ pdv=— %(%—%>;

o=

which are the required relations, depending on the square roots of the sextic
functions X=abedef, and Y=abedef of x and y respectively; but containing the
constants =, p, o, 7, the values of which are not as yet ascertained.

146. 1 commence the integration of these equations on the assumption that the

values u=0, v=0 correspond to indefinitely large values of # and y. We have

. X S . S
X=w"<1—;+ . >, Y=y6<l—?7—|— .. >,

where S=a+b-+c+d-+e+f; and thence the equations are

dof, 38 dy/ | 18
odu+rdv= %;Z‘<1+2;T - )——%y—‘?(l—l—&; .. >,

dx

18 dyf, 38
=1l 2= 1727 2=
wdu-+ pdv= ng<l-|— R >+2y2<1+ v >,
hence integrating

cutrv= -——%<1 -—l>—|— C

2 i
1 1 1 1
mibpr= = 85—

and thence

mlb+p@+%s<0u+7'v)=—}2<3—;—§/‘>+ Ces

. 11
where the omitted terms depend on @ &e.

Hence neglecting these terms

ou+TV _ 1+1
0w+ pv+1S(eu+m) \z 'y/)

an equation connecting the-indefinitely small values of w, v, with the indefinitely
large values of @, y.

147. From the equations A=k 0/ a, B=k,wv/b, taking (u, v) indefinitely small and
therefore (x, v) indefinitely large, we deduce
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and hence substituting for -?—}+§ the foregoing value, and introducing an indeterminate
multiplier M, we obtain

eyutcy"v=Mk) {mu—+pv+1S(cu+rv)+a(cut)},

which breaks up into the two equations
on'=Mky{m+(ES+da)el, o) '=Mhy{p+(ES+ia)r}
and thence also

07, = Mkry { 99 Cr/” = M/C7 { b } s
05/ =M]{,'5 { 9 C » 05” =Mk5 { Y c }}
01 =Mk, § » d }, =My d 3,
¢/ =Mk, { » ¢}, ew'=Mky,{ -, ¢ 1,

10 =Mk { » S b o= MF, o 3 S b

»

[l
L
-

2

which twelve equations determine the coefficients =, o, p, 7 in terms of the ¢/, ¢” of the
odd functions 5, 7, 10, 11, 13, 14 ; and moreover give rise to relations connecting these
¢, ¢” with each other and with the constants a, b, ¢, d, e, f.

148. It is observed that if as before

,a

d 4. d
o=t %0_‘-/0 aw —P@_'-Qdy ’

then, substituting for P, Q their values, we have
2 , —; = d 2 , = d d
o= —é(wu —|—p’v’)<\/Xdz+ MY@) —E(O'u’-l-‘r’v )<y\/X&;+m\/Y@>,

=(wu'+pv')d,+ (ou 700y,

if for shortness

2/ od - 2 < o d
b= =3 VELAVIL ) o= =i/ Kt Y,
MDCCCLXXX, 6 N
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and then operating with d on the equations A=wk;,,/ab, &c., we have for instance

ASB—BoA =0k { (wt ') (/011 b= 1 /111 /)
(o' +r0)(y/ady/b— /B30,

which is one of a system of 120 equations, the A, B being in fact any two of the 16
functions.

These are in fact nothing else than the foregoing system of 120 equations giving the
values of the differential combinations 9,3, —9,39,, &c., each as a sum of products of
pairs of functions, only on the right-hand sides we have expressions such as
A/ ad14/b— 1 /bd,4/a, &c., which present themselves as perfectly determinate functions
of , y: so that regarding = +pv’, ou'47v" as given linear functions of the arbitrary
quantities v/, v/, there is no longer anything indeterminate in the form of the equations.



